Advertisement

The European Physical Journal D

, Volume 41, Issue 3, pp 571–578 | Cite as

Entanglement in the three-qubit Heisenberg model with next nearest neighbor interaction and a nonuniform magnetic field

  • R. Liu
  • M.-L. LiangEmail author
  • B. Yuan
Quantum Optics and Quantum Information

Abstract.

Pairwise thermal entanglement in the three-qubit XXX Heisenberg model with next nearest neighbor interaction and a nonuniform magnetic field has been studied. It's found that the next nearest neighbor interaction has a great effect on the entanglement between the next nearest neighbor sites, but has slight effect on the nearest neighbor entanglement (NNE). Applying a magnetic field at the middle site enhances the next nearest neighbor entanglement (NNNE) sharply when there is a small field at the side sites and the next nearest neighbor coupling constant is positive. A staggered magnetic field helps to maintain nearest neighbor entanglement obviously.

PACS.

42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements 03.67.-a Quantum information 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.) 

QICS

03.40.+t Thermal/mixed state entanglement 04.10.+s Entanglement in spin models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935) zbMATHCrossRefADSGoogle Scholar
  2. E. Schrödinger, Naturwissenschaften 23, 807 (1935) CrossRefADSGoogle Scholar
  3. E. Schrödinger, Proc. Camb. Phil. Soc. 31, 555 (1935) zbMATHCrossRefGoogle Scholar
  4. J.S. Bell, Physics 1, 195 (1964) Google Scholar
  5. C.H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993) CrossRefADSMathSciNetGoogle Scholar
  6. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992) zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. P.W. Shor, SIAM J. Comput. 26, 1484 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  8. L.K. Grover, Phys. Rev. Lett. 79, 325 (1997) CrossRefADSGoogle Scholar
  9. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991) zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. D. Deutsch et al., Phys. Rev. Lett. 77, 2818 (1996) CrossRefADSGoogle Scholar
  11. S.Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997) CrossRefADSGoogle Scholar
  12. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) CrossRefADSGoogle Scholar
  13. X. Wang, Phys. Rev. A 64, 012313 (2002) CrossRefADSGoogle Scholar
  14. A.F. Terzis, E. Paspalakis, Phys. Lett. A 333, 438 (2004) CrossRefADSzbMATHGoogle Scholar
  15. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001) CrossRefADSGoogle Scholar
  16. L. Zhou, H.S. Song, Y.Q. Guo, C. Li, Phys. Rev. A 68, 024301 (2003) CrossRefADSGoogle Scholar
  17. Y. Sun, Y. Chen, H. Chen, Phys. Rev. A 68, 044301 (2003) CrossRefADSGoogle Scholar
  18. S. Zhe, X. Wang, Y. Li, Commun. Theor. Phys. (Beijing, China) 45, 61 (2006) Google Scholar
  19. M. Asoudeh, V. Karimipor, Phys. Rev. A 71, 022308 (2005) CrossRefADSGoogle Scholar
  20. G.F. Zhang, S.S. Li, Phys. Rev. A 72, 034302 (2005) CrossRefADSGoogle Scholar
  21. X.G. Wang, H.C. Hong, A.I. Solomon, J. Phys. A 34, 11307 (2001) zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. Z.C. Kao, J. Ng, Y. Yeo, Phys. Rev. A 72, 062302 (2005) CrossRefADSGoogle Scholar
  23. H.C. Fu, A.I. Solomon, X.G. Wang, J. Phys. A 35, 4293 (2002) zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. X.Q. Xi et al. Phys. Lett. A 297, 291 (2002) Google Scholar
  25. Y. Yeo, Phys. Rev. A 68, 022316 (2003) CrossRefADSMathSciNetGoogle Scholar
  26. X.G. Wang, Phys. Rev. A 66, 044305 (2002) CrossRefADSGoogle Scholar
  27. M. Cao, S.Q. Zhu, Phys. Rev. A 71, 034311(2005) CrossRefADSMathSciNetGoogle Scholar
  28. V. Eisler, Z. Zimboras, Phys. Rev. A 71, 042318 (2005) CrossRefADSGoogle Scholar
  29. Z. Huang, S. Kais, Phys. Rev. A 73, 022339 (2006) CrossRefADSGoogle Scholar
  30. S.J. Gu et al., Phys. Rev. A 70, 052302 (2004) CrossRefADSGoogle Scholar
  31. D. Loss, D.P. Divincenzo, Phys. Rev. A 57, 120 (1998) G. Burkard, D. Loss, D.P. Divincenzo, Phys. Rev. B 59, 2070 (1999) CrossRefADSGoogle Scholar
  32. B.E. Kane, Nature 393, 133 (1998) CrossRefADSGoogle Scholar
  33. R. Virjen, preprint arXiv:quant-ph/9905096 Google Scholar
  34. A. Sorensen, K. Molmer, Phys. Rev. Lett. 83, 2274 (1999) CrossRefADSGoogle Scholar
  35. D.A. Lidar, D. Bacon, K.B. Whaley, Phys. Rev. Lett. 82, 4556 (1999) CrossRefADSGoogle Scholar
  36. D.P. Dinincenzo et al., Nature 408, 339 (2000) CrossRefGoogle Scholar
  37. L.F. Santos, Phys. Rev. A 67, 062306 (2003) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Physics DepartmentSchool of Science, Tianjin UniversityTianjinP.R. China

Personalised recommendations