The European Physical Journal D

, Volume 41, Issue 3, pp 641–654 | Cite as

Test ion acceleration in a dynamic planar electron sheath

  • M. M. BaskoEmail author
Ultraintense and Ultrashort Laser Fields


New exact results are obtained for relativistic acceleration of test positive ions in the laminar zone of a planar electron sheath evolving from an initially mono-energetic electron distribution. The electron dynamics is calculated against the background of motionless foil ions. The limiting gamma-factor γp∞ of accelerated ions is shown to be determined primarily by the values of the ion-electron charge-over-mass ratio μ=meZp/mp and the initial gamma-factor γ0 of the accelerated electrons. For μ> 1/8 a test ion always overtakes the electron front and attains γp∞> γ0. For μ< 1/8 a test ion can catch up with the electron front only when γ0 is above a certain critical value γcr, which for μ≪1 can most often be evaluated as \(\gamma_{cr} = ({1}/{4}) \mu\exp\left(\mu^{-1}-1\right)\). In this model the protons and heavier test ions, for which γcr> 10398 is enormous, always lag behind the front edge of the electron sheath and have γp∞< γ0; for their maximum energy an appropriate intermediate asymptotic formula is derived. The domain of applicability of the laminar-zone results is analyzed in detail.


52.38.Kd Laser-plasma acceleration of electrons and ions 52.40.Kh Plasma sheaths 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E.L. Clark et al., Phys. Rev. Lett. 84, 670 (2000); E.L. Clark et al., Phys. Rev. Lett. 85, 1654 (2000) CrossRefADSGoogle Scholar
  2. A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000) CrossRefADSGoogle Scholar
  3. R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000) CrossRefADSGoogle Scholar
  4. M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002) CrossRefADSGoogle Scholar
  5. T.E. Cowan et al., Phys. Rev. Lett. 92, 204801 (2004) CrossRefADSGoogle Scholar
  6. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006) CrossRefADSGoogle Scholar
  7. S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000) CrossRefADSGoogle Scholar
  8. S.C. Wilks et al., Phys. Plasmas 8, 542 (2001) CrossRefADSGoogle Scholar
  9. A.V. Gurevich, L.V. Pariiskaya, L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 49, 647 (1965) [Sov. Phys. JETP 22, 449 (1966)] Google Scholar
  10. P. Mora, Phys. Rev. Lett. 90, 185002 (2003) CrossRefADSGoogle Scholar
  11. S. Betti, F. Ceccherini, F. Cornolti, F. Pegoraro, Plasma Phys. Control. Fusion 47, 521 (2005) CrossRefADSGoogle Scholar
  12. Yu.V. Medvedev, Plasma Phys. Control. Fusion 47, 1031 (2005) CrossRefADSGoogle Scholar
  13. M. Murakami, M.M. Basko, Phys. Plasmas 13, 012105 (2006) CrossRefADSGoogle Scholar
  14. S. Gitomer et al., Phys. Fluids 29, 2679 (1986) CrossRefADSGoogle Scholar
  15. J.E. Crow, P.L. Auer, J.E. Allen, J. Plasma Phys. 14, 65 (1975) ADSCrossRefGoogle Scholar
  16. M. Passoni, V.T. Tikhonchuk, M. Lontano, V.Yu. Bychenkov, Phys. Rev. E 69, 026411 (2004) CrossRefADSGoogle Scholar
  17. J.S. Pearlman, R.L. Morse, Phys. Rev. 40, 1652 (1978) ADSGoogle Scholar
  18. Y. Kishimoto et al., Phys. Fluids 26, 2308 (1983) CrossRefADSGoogle Scholar
  19. M. Passoni, M. Lontano, Laser Part. Beams 22, 163 (2004) CrossRefADSGoogle Scholar
  20. S.V. Bulanov et al., Plasma Phys. Rep. 30, 18 (2004) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussian Federation

Personalised recommendations