The European Physical Journal D

, Volume 41, Issue 2, pp 337–348 | Cite as

Nonlinear lensing mechanisms in a cloud of cold atoms

  • G. Labeyrie
  • G. L. Gattobigio
  • T. Chanelière
  • G. L. Lippi
  • T. Ackemann
  • R. Kaiser
Nonlinear Dynamics

Abstract.

We present an experimental study of nonlinear lensing of near-resonant light by a cloud of laser-cooled rubidium atoms, specifically aimed at understanding the role of the interaction time between the light and the atomic vapor. We identify four different nonlinear mechanisms, each associated with a different time constant: electronic nonlinearity, Zeeman optical pumping, hyperfine optical pumping and radiation pressure. Our observations can be quite accurately reproduced using a simple rate equation model which allows for a straightforward discussion of the various effects. The results are important for planning more refined experiments on transverse nonlinear optics and self-organization in samples of cold atoms.

PACS.

42.65.Jx Beam trapping, self-focusing and defocusing; self-phase modulation 32.80.Pj Optical cooling of atoms; trapping 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Hercher, J. Opt. Soc. Am. 54, 563 (1964) Google Scholar
  2. P.L. Kelley, Phys. Rev. Lett. 15, 1005 (1965) CrossRefADSGoogle Scholar
  3. J.E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974) CrossRefADSGoogle Scholar
  4. Y.R. Shen, Prog. Quantum Electron. 4, 2 (1975) CrossRefADSGoogle Scholar
  5. J. Marburger, Prog. Quantum Electron. 4, 35 (1975) CrossRefADSGoogle Scholar
  6. R.W. Hellwarth, J. Opt. Soc. Am. 67, 1 (1977) ADSGoogle Scholar
  7. A. Yariv, D.M. Pepper, Opt. Lett. 1, 16 (1977) ADSCrossRefGoogle Scholar
  8. D.M. Bloom, G.C. Bjorklund, Appl. Phys. Lett. 31, 592 (1977) CrossRefADSGoogle Scholar
  9. R.G. Brewer, Phys. Rev. Lett. 19, 8 (1967) CrossRefADSGoogle Scholar
  10. F. Shimizu, Phys. Rev. Lett. 19, 1097 (1967) CrossRefADSGoogle Scholar
  11. A.C. Cheung, D.M. Rank, R.Y. Chiao, C.H. Townes, Phys. Rev. Lett. 20, 786 (1968) CrossRefADSGoogle Scholar
  12. R.S. Benning, V. Wong, D.M. Marino, D.L. Aronstein, R.W. Boyd, C.R. Stroud Jr, S. Lukishova, D.J. Gauthier, Phys. Rev. Lett. 88, 113901 (2002) CrossRefADSGoogle Scholar
  13. A. Gahl, J. Seipenbusch, A. Aumann, M. Möller, W. Lange, Phys. Rev. A 50, R917 (1994) Google Scholar
  14. T. Ackemann, Y. Logvin, A. Heuer, W. Lange, Phys. Rev. Lett. 75, 3450 (1995) CrossRefADSGoogle Scholar
  15. A.V. Mamaev, M. Saffman, A.A. Zozulya, Phys. Rev. Lett. 76, 2262 (1996) CrossRefADSGoogle Scholar
  16. T. Ackemann, W. Lange, Appl. Phys. B 72, 21 (2001) ADSGoogle Scholar
  17. P. Mandel, M. Tlidi, J. Opt. B: Quantum Semiclass. Opt. 6, R60 (2004) Google Scholar
  18. L.A. Lugiato, M. Brambilla, A. Gatti, Adv. A. Mol. Opt. Phys. 40, 229 (1999) Google Scholar
  19. F.T. Arecchi, S. Boccaletti, P.L. Ramazza, Phys. Rep. 318, 1 (1999) CrossRefADSGoogle Scholar
  20. T. Chanelière, D. Wilkowski, Y. Bidel, R. Kaiser, C. Miniatura, Phys. Rev. E 70, 036602 (2004); S. Balik, P. Kulatunga, C.I. Sukenik, M.D. Havey, D.V. Kupriyanov, I.M. Sokolov, J. Mod. Opt. 52, 2269 (2005) CrossRefADSGoogle Scholar
  21. H. Cao, Waves in Random Media 13, R1 (2003); S.C. Rand, C. Soukoulis, D.S. Wiersma, J. Opt. Soc. Am. B 21, 98 (2004) Google Scholar
  22. B.A. Malomed, D. Mihalache, F. Wise, L. Torner, J. Opt. B: Quantum Semiclass. Opt. 7, R53 (2005) Google Scholar
  23. T. Ackemann, A. Aumann, E. Große Westhoff, Yu. A. Logvin, W. Lange, J. Opt. B: Quantum Semiclass. Opt. 3, S124 (2001) Google Scholar
  24. M. Saffman, Phys. Rev. Lett. 81, 65 (1998) CrossRefADSGoogle Scholar
  25. G.A. Muradyan, Y. Wang, W. Williams, M. Saffman, Absolute instability and pattern formation in cold atomic vapors, in Nonlinear Guided Waves and Their Applications (Dresden, 2005), Paper ThB29 Google Scholar
  26. G. Labeyrie, T. Ackemann, B. Klappauf, M. Pesch, G.-L. Lippi, R. Kaiser Eur. Phys. J. D 22, 473 (2003) ADSGoogle Scholar
  27. Y. Wang, M. Saffman, Phys. Rev. A 70, 013801 (2004) CrossRefADSGoogle Scholar
  28. Y. Wang, M. Saffman, Opt. Commun. 241, 513 (2004) CrossRefADSGoogle Scholar
  29. G.L. Gattobigio, F. Michaud, J. Javaloyes, J.W.R. Tabosa, R. Kaiser, Phys. Rev. A 74, 043407 (2006) CrossRefADSGoogle Scholar
  30. D. Kruse, C. von Cube, C. Zimmermann, Ph.W. Courteille, Phys. Rev. Lett. 91, 183601 (2003) CrossRefADSGoogle Scholar
  31. J.E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974) CrossRefADSGoogle Scholar
  32. M. Sheik-Bahae, A. Said, E.W.V. Stryland, Opt. Lett. 14, 955 (1989) ADSGoogle Scholar
  33. G. Labeyrie, C.A. Müller, D.S. Wiersma, C. Miniatura, R. Kaiser, J. Opt. B: Quantum Semiclassical Opt. 2, 672 (2000) CrossRefADSGoogle Scholar
  34. T. Ackemann, T. Scholz, Ch. Vorgerd, J. Nalik, L.M. Hoffer, G.L. Lippi, Opt. Commun. 147, 411 (1998) CrossRefADSGoogle Scholar
  35. A time constant of \(20~\mu\)s is estimated for the conditions of reference Saffman Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • G. Labeyrie
    • 1
  • G. L. Gattobigio
    • 1
    • 2
  • T. Chanelière
    • 1
    • 3
  • G. L. Lippi
    • 1
  • T. Ackemann
    • 4
  • R. Kaiser
    • 1
  1. 1.Institut Non Linéaire de Nice, UMR 6618 CNRSValbonneFrance
  2. 2.Dipartimento di Fisica dell'Università di Ferrara and INFN-Sezione di FerraraFerraraItaly
  3. 3.Georgia Institute of TechnologyAtlantaUSA
  4. 4.SUPA, Department of PhysicsUniversity of StrathclydeONGUK

Personalised recommendations