Advertisement

The European Physical Journal D

, Volume 41, Issue 1, pp 199–203 | Cite as

Entanglement generation in trapped atoms

  • X. HaoEmail author
  • S. Zhu
Quantum Optics and Quantum Information

Abstract.

The two atoms in the ion trap are entangled by the interaction with an external excited atom. The evolution of the entanglement is analytically derived without the decoherence. Considering the spontaneous decay from the environment, the evolution of the entanglement is similar to the damping Rabi oscillation. The generation of entanglement is induced by the dipole-dipole type interaction of atoms. It is found that the entanglement of two trapped atoms is robust with the uniform interaction with the external atom. The collective spontaneous emission from the coupling between the atoms may enhance the entanglement.

PACS.

03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.) 03.67.Mn Entanglement production, characterization, and manipulation 05.40.Ca Noise 

QICS

03.30.+e Entangling power of quantum evolutions 02.40.+d Interaction with environment and decoherence 15.10.En Ions: vibrational states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.P. Divincenzo, D. Eacon, J. Kempe, G. Burkard, K.B. Whaley, Nature 408, 339 (2000) CrossRefADSGoogle Scholar
  2. J.I. Garcia-Ripoll, P. Zoller, J.I. Cirac, J. Phys. B: At. Mol. Opt. Phys. 38, s567 (2005). Google Scholar
  3. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991) CrossRefADSMathSciNetGoogle Scholar
  4. A. Vaziri, G. Weihs, A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002) CrossRefADSGoogle Scholar
  5. N.J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Phys. Rev. Lett. 88, 127902 (2002) CrossRefADSMathSciNetGoogle Scholar
  6. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) Google Scholar
  7. C.H. Bennett, D.P. Divincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996) CrossRefADSMathSciNetGoogle Scholar
  8. V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998) CrossRefADSGoogle Scholar
  9. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) CrossRefADSGoogle Scholar
  10. M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 88, 197901 (2002) CrossRefADSGoogle Scholar
  11. X.X. Yi, C.S. Yu, L. Zhou, H.S. Song, Phys. Rev. A 68, 052304 (2003) CrossRefADSGoogle Scholar
  12. A. Beige, S. Bose, D. Braun, S.F. Huelga, P.L. Knight, M.B. Plenio, V. Vedral, J. Mod. Opt. 47, 2583 (2000) CrossRefADSMathSciNetGoogle Scholar
  13. P. Horodecki, Phys. Rev. A 63, 022108 (2001) CrossRefADSMathSciNetGoogle Scholar
  14. L. Zhou, X.X. Yi, H.S. Song, Y.Q. Guo, J. Opt. B: Quant. Semiclass. Opt. 6, 378 (2004) CrossRefADSGoogle Scholar
  15. X. Wang, K. Molmer, Eur. Phys. J. D 18, 385 (2002) ADSGoogle Scholar
  16. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003) CrossRefADSGoogle Scholar
  17. A. Vukics, J. Janszky, P. Domokos, J. Phys. B: At. Mol. Opt. Phys. 38, 1453 (2005) CrossRefADSGoogle Scholar
  18. P. Stelmachovic, V. Buzek, Phys. Rev. A 70, 032313 (2004) CrossRefADSGoogle Scholar
  19. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001) CrossRefADSGoogle Scholar
  20. X. Wang, Phys. Rev. A 66, 034302 (2002) CrossRefADSGoogle Scholar
  21. M. Ziman, V. Buzek, Phys. Rev. A 72, 022110 (2005) CrossRefADSGoogle Scholar
  22. V. Buzek, Phys. Rev. A 39, 2232 (1989) CrossRefADSGoogle Scholar
  23. R.H. Lehmberg, Phys. Rev. A 2, 883 (1970) CrossRefADSGoogle Scholar
  24. R.H. Lehmberg, Phys. Rev. A 2, 889 (1970) CrossRefADSGoogle Scholar
  25. Z. Ficek, R. Tanas, Phys. Rep. 372, 369 (2002) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Physical Science and Technology, Suzhou UniversityJiangsuP.R. China

Personalised recommendations