Advertisement

The European Physical Journal D

, Volume 41, Issue 1, pp 157–162 | Cite as

Atomic density of a harmonically trapped ideal gas near Bose-Einstein transition temperature

  • R. Hoppeler
  • J. Viana Gomes
  • D. BoironEmail author
Laser Cooling and Quantum Gas

Abstract.

We have studied the atomic density of a cloud confined in an isotropic harmonic trap at the vicinity of the Bose-Einstein transition temperature. We show that, for a non-interacting gas and near this temperature, the ground-state density has the same order of magnitude as the excited states density at the centre of the trap. This holds in a range of temperatures where the ground-state population is negligible compared to the total atom number. We compare the exact calculations, available in a harmonic trap, to semi-classical approximations. We show that these latter should include the ground-state contribution to be accurate.

PACS.

03.75.Hh Static properties of condensates; thermodynamical, statistical, and structural properties 03.65.Sq Semiclassical theories and applications 05.30.Jp Boson systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proceedings of the International School of Physics “Enrico Fermi”, Course CXL, edited by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Amsterdam, 1999) Google Scholar
  2. F. Dalfovo, S. Giorgini, L.P. Pitaeskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999) CrossRefADSGoogle Scholar
  3. S. Grossmann, M. Holthaus, Z. Naturforsch. A 50, 921 (1995) Google Scholar
  4. W. Ketterle, N.J. van Druten, Phys. Rev. A 54, 656 (1996) CrossRefADSGoogle Scholar
  5. K. Kirsten, D.J. Toms, Phys. Rev. A 54, 4188 (1996) CrossRefADSMathSciNetGoogle Scholar
  6. S. Giorgini, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 54, R4633 (1996) Google Scholar
  7. H. Haugerud, T. Haugest, F. Ravndal, Phys. Lett. A 225, 18 (1997) CrossRefADSGoogle Scholar
  8. S. Giorgini, L.P. Pitaevskii, S. Stringari, J. Low Temp. Phys. 109, 309 (1997) Google Scholar
  9. R.K. Pathria, Phys. Rev. A 58, 1490 (1998) CrossRefADSGoogle Scholar
  10. W. Krauth, Phys. Rev. Lett. 77, 3695 (1996) CrossRefADSGoogle Scholar
  11. P. Arnold, B. Tomasik, Phys. Rev. A 64, 053609 (2001) CrossRefADSGoogle Scholar
  12. K. Huang, Statistical Mechanics (Wiley, 1987) Google Scholar
  13. L.D. Landau, E.M. Liftshiz, Statistical Physics (Butterworths, 1996) Google Scholar
  14. H.D. Politzer, Phys. Rev. A 54, 5048 (1996) CrossRefADSGoogle Scholar
  15. C. Herzog, M. Olshanii, Phys. Rev. A 55, 3254 (1997) CrossRefADSGoogle Scholar
  16. Y. Castin, lecture note in “Coherent atomic matter waves”, Les Houches, Session LXXII, edited by R. Kaiser, C.I. Westbrook, F. David (Springer, 2001) Google Scholar
  17. T. Bergeman, D.L. Feder, N.L. Balazs, B.I. Schneider, Phys. Rev. A 61, 063605 (2000) CrossRefADSGoogle Scholar
  18. In reference pathria, the transition temperature was indeed Tsc (see later in the text). The transition temperature defined by the maximum of the second derivative of the condensate fraction has been calculated for atom number in the range 103–108; the relative deviation is below ∼ 10-3 on the transition temperature and ∼ 10-2 on the condensate peak density fraction Google Scholar
  19. We use the usual definition of Bose functions \(g_a(x)=\sum\limits_{l=1}^\infty x^l/l^a\). We remind that ga(1)=ζ(a) with \(\zeta(\ )\) the Riemann Zeta function. Note that g1(x)=-ln (1-x) and d ga/ d x(x)=ga-1(x)/x Google Scholar
  20. After submission of this article, we have been aware of a different type of semi-classical approximations which does not give rise to divergences. See V.I. Yukalov, Phys. Rev. A 72, 033608 (2005) CrossRefGoogle Scholar
  21. We use the result of reference robinson for the calculation of the Bose functions near the transition temperature. For the series in model ex, the convergence is very slow but can easily be accelerated. For instance, it is much better to write \(N={z\over 1-z}+\sum\limits_{l=1}^\infty z^l({1\over 1-e^{-\tau l }}-1)\) because the second term converges for large l because of the zl part and because of the \(({1\over 1-e^{-\tau l }}-1)\) part Google Scholar
  22. J.E. Robinson, Phys. Rev. 83, 678 (1951) CrossRefADSGoogle Scholar
  23. A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C.I. Westbrook, A. Aspect, Science 292, 461 (2001); published online 22 march 2001 (10.1126/science.1060622) ADSGoogle Scholar
  24. V. Vuletic, A.J. Kerman, C. Chin, S. Chu, Phys. Rev. Lett. 82, 1406 (1999) CrossRefADSGoogle Scholar
  25. M. Schellekens, R. Hoppeler, A. Perrin, J. Viana Gomes, D. Boiron, A. Aspect, C.I. Westbrook, Science 310, 648 (2005); published online 15 september 2005 (10.1126/science.1118024) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire Charles Fabry de l'Institut d'Optique, UMR 8501 du CNRSOrsay CedexFrance

Personalised recommendations