The European Physical Journal D

, Volume 41, Issue 1, pp 95–102 | Cite as

Classical dynamics of polar diatomic molecules in external fields

  • J. P. SalasEmail author
Molecular Physics and Chemical Physics


In this paper, we present the study of the global classical dynamics of a rigid diatomic molecule in the presence of combined electrostatic and nonresonant polarized laser fields. In particular, we focus on the collinear field case, which is an integrable system because the z-component Pφ of the angular momentum is conserved. The study involves the complete analysis of the stability of the equilibrium points, their bifurcations and the evolution of the phase flow as a function of the field strengths and Pφ. Finally, the influence of the bifurcations on the orientation of the quantum states is studied.


31.15.Qg Molecular dynamics and other numerical methods 05.45.-a Nonlinear dynamics and chaos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Langevin, J. Phys. 4, 678 (1905) Google Scholar
  2. P. Debye, Polar molecules (Chemical Catalogue, reprinted by Dover, New York, 1929) Google Scholar
  3. H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003) CrossRefADSGoogle Scholar
  4. J.M. Rost, J.C. Griffin, B. Friedrich, D.R. Herschbach, Phys. Rev. Lett. 68, 1299 (1992) CrossRefADSGoogle Scholar
  5. B. Friedrich, D.R. Herschbach, J. Phys. Chem. 99, 15686 (1995) CrossRefGoogle Scholar
  6. B. Friedrich, D.R. Herschbach, J. Chem. Phys. 111, 6157 (1999) CrossRefADSMathSciNetGoogle Scholar
  7. B. Friedrich, D.R. Herschbach, J. Phys. Chem. A 103, 10280 (1999) CrossRefGoogle Scholar
  8. L. Cai, J. Marango, B. Friedrich, Phys. Rev. Lett. 86, 775 (2001) CrossRefADSGoogle Scholar
  9. H. Sakai, S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki, Phys. Rev. Lett. 90, 083001 (2003); S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki, H. Sakai, J. Chem. Phys. 118, 4052 (2003) CrossRefADSGoogle Scholar
  10. M. Joyeux, S.C. Farantos, R. Schinke, J. Phys. Chem. A 106, 5407 (2002) CrossRefGoogle Scholar
  11. C.A. Arango, W.W. Kennerly, G. Ezra, J. Chem. Phys. 122, 184303 (2005) CrossRefADSGoogle Scholar
  12. R. Cushman, L. Bates, Global aspects of classical integrable systems (Birkhauser Verlag, Besel, Switzerland, 1997); D.A. Sadovskií, B.I. Zhilinskií, Phys. Lett. A 256, 235 (1999); I.N. Kozin, R.M. Roberts, J. Chem. Phys. 118, 10523 (2003); K. Efstathiou, M. Joyeux, D.A. Sadovskií, Phys. Rev. A 69, 032504 (2004) CrossRefMathSciNetGoogle Scholar
  13. C.A. Arango, W.W. Kennerly, G. Ezra, Chem. Phys. Lett. 392, 486 (2004) CrossRefGoogle Scholar
  14. A. Elipe, A. Abad, A. Deprit, Int. J. Non-Linear Mech. 36, 693 (2001) CrossRefMathSciNetGoogle Scholar
  15. As it is noted by Arango et al. arangocpl, if we consider w2 ≠0 the quotient \({\cal A} = w_1/2w_2\) is the effective parameter that controls the dynamics. We prefer to use w1 and w2 separately in order to consider a continuous variation of w2. Google Scholar
  16. D. Cox, J. Little, D. O'Shea, Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (Springer–Verlag, Berlin and New York, 1992). Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Area de Física Aplicada, Universidad de La RiojaLogroñoSpain

Personalised recommendations