Advertisement

The European Physical Journal D

, Volume 41, Issue 1, pp 127–141 | Cite as

Structure and dynamics of cationic van-der-Waals clusters

II. Dynamics of protonated argon clusters
  • T. Ritschel
  • Ch. Zuhrt
  • L. ZülickeEmail author
  • P. J. Kuntz
Clusters and Nanostructures

Abstract.

A diatomics-in-molecules (DIM) model with ab-initio input data, which in part I successfully described the structure and bonding properties of protonated argon clusters ArnH+, is used here to investigate some aspects of the dynamics of such aggregates for n up to 30. The simple triatomic ionic fragment, Ar2H+, is studied in some detail with respect to normal vibrations, characteristics of classical intramolecular dynamics as reflected in the Fourier spectra of dynamical variables, and accurate quantum states of the vibrational motion. For larger clusters ArnH+ (n ≤30), the normal vibrational frequencies (and displacement eigenvectors) are calculated and related to the cluster structure. In addition, the Fourier spectra are analyzed with respect to their variation with changing internal energy and cluster size. As expected, the clusters show some floppy character. Even a little vibrational excitation can lead to internal rearrangement and to Ar-atom evaporation from the clusters; this is studied in more detail for one small complex (n = 3). Electronic excitation to one of the low-lying excited states, which are all globally repulsive, leads to complete fragmentation (atomization) of the clusters. A variety of conceivable elementary collision processes involving protonated argon clusters are discussed. Some of these may play a role in the gas-phase formation of medium-sized ArnH+ aggregates.

PACS.

36.40.Wa Charged clusters 36.40.Qv Stability and fragmentation of clusters 36.40.Jn Reactivity of clusters 36.40.Mr Spectroscopy and geometrical structure of clusters 34.30.+h Intramolecular energy transfer; intramolecular dynamics; dynamics of van der Waals molecules 34.50.-s Scattering of atoms and molecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.A. Miller, V.E. Bondybey, Molecular Ions: Spectroscopy, Structure, and Chemistry (North-Holland, New York, 1983) Google Scholar
  2. Clusters of Atomcs and Molecules, edited by H. Haberlandt (Springer-Verlag, Berlin, 1994), Vols. I and II Google Scholar
  3. T. Ritschel, P.J. Kuntz, L. Zülicke, Eur. Phys. J. D 33, 421 (2005); part I of this series CrossRefADSGoogle Scholar
  4. F. Ragnetti, Ch. Zuhrt, L. Zülicke, in Femtochemistry, edited by M. Chergui (World Scientific Publ. Comp., Singapore, 1996) Google Scholar
  5. L. Zülicke, F. Ragnetti, R. Neumann, Ch. Zuhrt, Int. J. Quant. Chem. 64, 211 (1997) CrossRefGoogle Scholar
  6. Ch. Zuhrt, R. Neumann, L. Zülicke, Chem. Phys. 240, 117 (1999) CrossRefGoogle Scholar
  7. L. Zülicke, R. Neumann, Ch. Zuhrt, J. Schretter, Int. J. Quant. Chem. 80, 486 (2000) CrossRefGoogle Scholar
  8. Reaction Dynamics in Clusters and Condensed Phase, edited by J. Jortner, R.D. Levine, P. Pullman (Kluwer Academic Publishers, Dordrecht, 1994) Google Scholar
  9. (a) D. Neuhauser, J. Chem. Phys. 93, 2611 (1990); D. Neuhauser, J. Chem. Phys. 100, 5076 (1994); (b) V.A. Mandelshtam, T.P. Grozdanov, H.S. Taylor, J. Chem. Phys. 103, 10074 (1995); (c) V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 106, 5085 (1997) CrossRefADSGoogle Scholar
  10. T. Ritschel, L. Zülicke, P.J. Kuntz, Z. Phys. Chem. 218, 377 (2004) Google Scholar
  11. MOLPRO is a package of ab initio programs written by H.-J. Werner and P.J. Knowles, with contributions from R.D. Amos, A. Bernhardsson, A. Berning, P. Celani, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A.W. Lloyd, S.J. McNicholas, F.R. Manby, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson Google Scholar
  12. D.E. Woon, T.H. Dunning Jr, J. Chem. Phys. 99, 3739 (1993) Google Scholar
  13. P.J. Kuntz, J.L. Schreiber, J. Chem. Phys. 76, 4120 (1982) CrossRefADSGoogle Scholar
  14. L. Zülicke, Ch. Zuhrt, X. Chapuisat, C. Saint-Espès, Int. J. Quant. Chem. 52, 227 (1994) CrossRefGoogle Scholar
  15. (a) Z. Bačić, J.C. Light, Annu. Rev. Phys. Chem. 40, 469 (1989); (b) J.C. Light, T. Carrington Jr, Adv. Chem. Phys. 114, 263 (2000) CrossRefADSGoogle Scholar
  16. R. Radau, Ann. Sci. ENS 5, 311 (1868) MathSciNetGoogle Scholar
  17. D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992) CrossRefADSGoogle Scholar
  18. Ch. Zuhrt, to be published Google Scholar
  19. G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (D. van Nostrand Comp., New York, 1964) Google Scholar
  20. M.D. Pattengill, Classical Trajectory Methods, in: Atom-Molecule Collision Theory, edited by R.B. Bernstein (Plenum Press, New York, 1979) Google Scholar
  21. (a) D.L. Bunker, Methods Comp. Phys. 10, 287 (1971); (b) L.F. Shampine, M.K. Gordon, Computer Solution of Ordinary Differential Equations (W.H. Freeman and Comp., San Francisco, 1975) Google Scholar
  22. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985) and later articles CrossRefADSGoogle Scholar
  23. J.Y. Qu, W. Li, R. Guo, X.S. Zhao, J. Chem. Phys. 117, 2592 (2002) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • T. Ritschel
    • 1
  • Ch. Zuhrt
    • 1
  • L. Zülicke
    • 1
    Email author
  • P. J. Kuntz
    • 2
  1. 1.Universität Potsdam, Institut für ChemieGolmGermany
  2. 2.Hahn-Meitner-InstitutBerlinGermany

Personalised recommendations