Advertisement

The European Physical Journal D

, Volume 41, Issue 1, pp 143–150 | Cite as

Excessive Doppler broadening of the Hα line in a hollow cathode glow discharge

Radial distribution, influence of surface coverage and temperature effect
  • N. M. Šišović
  • G. Lj. Majstorović
  • N. KonjevićEmail author
Plasma Physics

Abstract.

A comparative study of the radial intensity distribution of the excessively Doppler broadened hydrogen Hα line in a hollow cathode (HC) glow discharge operated in hydrogen and argon-hydrogen gas mixtures with stainless steel (SS) and titanium (Ti) cathode is reported. The main interest of this work is focused on the dependence of radial distribution upon cathode material and cathode surface composition. The analysis of experimental radial distributions and results obtained from H+↦ metal surface interaction simulation combined with available data for H ↦ metal target interaction explains the difference between SS and Ti cathodes. These results explain also the important role of metal hydrides at the cathode surface for discharge-HC interaction. The influence of the hollow cathode temperature on the radial distribution of the excessively broadened Hα line and on the emission of Ar I and Ar II lines from discharge in argon-hydrogen gas mixture are also investigated. The increase of the excessive Doppler broadened part of the Hα line profile with HC temperature is always detected. The intensity of Ar I and Ar II lines is also used to examine the influence of small admixtures of hydrogen in argon.

PACS.

32.30.Jc Visible and ultraviolet spectra 32.70-n Intensities and shapes of atomic spectral lines 52.80.Hc Glow; corona 52.70.Kz Optical (ultraviolet, visible, infrared) measurements 52.20.Hv Atomic, molecular, ion, and heavy-particle collisions 52.40.Hf Plasma-material interactions; boundary layer effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Konjević, G.Lj. Majstorović, N.M. Šišović, Appl. Phys. Lett. 86, 251502 (2005) CrossRefADSGoogle Scholar
  2. B.M. Obradović, M.Sc. thesis, University of Belgrade (2001), in Serbian Google Scholar
  3. N. Cvetanović, M.M. Kuraica, N. Konjević, J. Appl. Phys. 97, 033302 (2005) CrossRefADSGoogle Scholar
  4. Z.Lj. Petrović, B.M. Jelenković, A.V. Phelps, Phys. Rev. Lett. 68, 326 (1992) ADSGoogle Scholar
  5. M. Gemišić-Adamov, B.M. Obradović, M.M. Kuraica, N. Konjević, IEEE Trans. Plasma Sci. 31, 444 (2003) CrossRefADSGoogle Scholar
  6. S.B. Radovanov, K. Dzierzerga, J.R. Roberts, J.K. Ollthoff, Appl. Phys. Lett. 66, 2637 (1995) CrossRefADSGoogle Scholar
  7. I.R. Videnović, N. Konjević, M.M. Kuraica, Spectrochim. Acta 51B, 1707 (1996) CrossRefADSGoogle Scholar
  8. R.L. Mills, P.C. Ray, B. Dandapani, R.M. Mayo, J. He, J. Appl. Phys. 92, 7008 (2002) CrossRefADSMathSciNetGoogle Scholar
  9. R.L. Mills, P.C. Ray, M. Nansteel, X. Chen, R.M. Mayo, J. He, B. Dandapapanii, IEEE Trans. Plasma. Sci. 31, 338 (2003) CrossRefADSGoogle Scholar
  10. A.V. Phelps, J. Appl. Phys. 98, 066108 (2005) CrossRefADSGoogle Scholar
  11. NotesOnMills.pdf may be requested from avp@jila.colorado.eduGoogle Scholar
  12. N.M. Šišović, G.Lj. Majstorović, N. Konjević, Eur. Phys. J. D 32, 347 (2005) CrossRefGoogle Scholar
  13. C. Barbeau, J. Jolly, J. Phys. D 23, 1168 (1990) CrossRefADSGoogle Scholar
  14. M. Warrier, R. Schneider, X. Bonnin, Computer Phys. Comm. 160, 46 (2004) CrossRefADSGoogle Scholar
  15. T. Tabata, R. Ito, Present status of data compilation on ion backscattering, Institute of Plasma Physics Report, Nagoya, Japan, IPPJ-AM-64:84–89, 1989. Google Scholar
  16. O.S. Oen, M.T. Robinson, J. Nucl. Mater. 76-77, 370 (1978) Google Scholar
  17. A.V. Phelps, J. Phys. Chem. Ref. Data 19, 653 (1990) ADSGoogle Scholar
  18. A.V. Phelps, J. Phys. Chem. Ref. Data 21, 883 (1992) ADSCrossRefGoogle Scholar
  19. A. Bogaerts, A. Okhrimovskyy, N. Baguer, R.Gijbels, Plasma Sources Sci.Technol. 14, 191 (2005) CrossRefADSGoogle Scholar
  20. S.K. Ohorodnik, W.W. Harrison, J. Anal. Atom. Spectr. 9, 991 (1994) CrossRefGoogle Scholar
  21. M. Kasik, C. Michellon, L.C. Pitchford, J. Anal. Atom. Spectr. 17, 1398 (2002) CrossRefGoogle Scholar
  22. A. Bogaerts, R. Gijbels, J. Anal. Atom. Spectrom. 18, 1206 (2004) CrossRefGoogle Scholar
  23. A. Bogaerts, J. Anal. Atom. Spectrom. 17, 768 (2002) CrossRefGoogle Scholar
  24. V.-D. Hodoroaba, V. Hoffmann, E.B.M. Steers, K. Wetzig, J. Anal. Atom. Spectrom. 15, 1075 (2000) CrossRefGoogle Scholar
  25. V.D. Hodoroaba, E.B.M. Steers, V. Hoffmann, K. Wetzig, J. Anal. Atom. Spectrom. 16, 43 (2001) CrossRefGoogle Scholar
  26. J.D. Hey, C.C. Chu, E. Hintz, Contrib. Plasma Phys. 40, 9 (2000) CrossRefADSGoogle Scholar
  27. M. Koubiti, Y. Marandet, A. Escarguel, H. Capes, L. Godbert-Mouret, R. Stamm, C. De Michelis, R. Guirlet, M. Mattioli, Plasma Phys. Control. Fusion 44, 261 (2002) CrossRefADSGoogle Scholar
  28. J.D. Hey, C.C. Chu, Ph. Mertens, S. Brezinsek, B. Unterberg, J. Phys. B: At. Mol. Opt. Phys. 37, 2543 (2004) CrossRefADSGoogle Scholar
  29. J.D. Hey, C.C. Chu, Ph. Mertens, J. Phys. B: At. Mol. Opt. Phys. 38, 3517 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • N. M. Šišović
    • 1
  • G. Lj. Majstorović
    • 2
  • N. Konjević
    • 1
    Email author
  1. 1.Faculty of Physics, University of BelgradeBelgradeSerbia
  2. 2.Military AcademyBelgradeSerbia

Personalised recommendations