Advertisement

The European Physical Journal D

, Volume 41, Issue 1, pp 113–119 | Cite as

Melting, freezing and nucleation in nanoclusters of potassium chloride

II - Modelling the solid-liquid coexistence
  • P. C.R. Rodrigues
  • F. M.S. Silva FernandesEmail author
Clusters and Nanostructures

Abstract.

In a recent article we have reported extensive molecular dynamics simulations for the melting freezing and nucleation in unconstrained nanoclusters of KCl. Based on that study we propose, in the present article, a theoretical model for the solid-liquid coexistence in finite systems, at virtually zero external pressure and no vaporisation. The main trends of the phase coexistence behaviour, namely the starting and the end points, are explained by the model as a function of system size. Other specific properties of clusters, eventually accessible by experiment, are defined and their values predicted. On the absence of available experimental data, the model is tested against simulation results with fairly good accordance.

PACS.

61.46.-w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals 64.70.Nd Structural transitions in nanoscale materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y.G. Chushak, L.S. Bartell, J. Phys. Chem. B 105, 11605 (2001) CrossRefGoogle Scholar
  2. G. Wulff, Z. Kristallogr. 34, 449 (1901) Google Scholar
  3. I.V. Markov, Crystal grouth for beginners, 3rd edn. (World Scientific Publishing Co. Pte. Ltd., 1998) Google Scholar
  4. K. Binder, Physica A 319, 99 (2003) CrossRefADSMathSciNetGoogle Scholar
  5. C.L. Cleveland, U. Landman, W.D. Luedtke, J. Phys. Chem. 98, 6272 (1994) CrossRefGoogle Scholar
  6. C. Rottman, M. Wortis, Phys. Rev. Lett. 52, 1009 (1984) CrossRefADSGoogle Scholar
  7. C. Rottman, M. Wortis, Phys. Rev. B 29, 328 (1984) CrossRefADSGoogle Scholar
  8. C. Rottman, M. Wortis, Phys. Rep. 103, 59 (1984) CrossRefADSMathSciNetGoogle Scholar
  9. P.C.R. Rodrigues, Ph.D. thesis, Faculdade de Ciências, Universidade de Lisboa (2006) Google Scholar
  10. P.C.R. Rodrigues, F.M.S. Silva Fernandes, Eur. Phys. J. D 40, 115 (2006) CrossRefADSGoogle Scholar
  11. P.G. Debenedetti, Metastable Liquids, Concepts and Principles (Princeton University Press, New Jersey, 1996) Google Scholar
  12. P.C.R. Rodrigues, F.M.S. Silva Fernandes, Eur. Phys. J. D (to be submitted) Google Scholar
  13. P.C.R. Rodrigues, F.M.S. Silva Fernandes, Eur. Phys. J. D (to be submitted) Google Scholar
  14. P.C.R. Rodrigues, F.M.S. Silva Fernandes, Int. J. Quant. Chem. 84, 169 (2001) CrossRefGoogle Scholar
  15. S. Fiechter, Sol. Energy Mater. Sol. Cells 83, 459 (2004) CrossRefGoogle Scholar
  16. Y. Sato, T. Ejima, M. Fukasawa, K. Abe, J. Phys. Chem. 94, 1991 (1990) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryFaculty of Sciences, University of LisboaLisboaPortugal

Personalised recommendations