Advertisement

A theoretical study on the excited states of MC3 (M = Sc, V, and Cr)

  • Y. Yuan
  • K. DengEmail author
  • Y. Liu
  • C. Tang
  • G. Lu
  • J. Yang
  • X. Wang
Clusters and Nanostructures

Abstract.

The ground state structures of MC3 (M = Sc, V, and Cr) and their anions have been investigated, employing the first-principles DFT at the B3LYP level. The calculations predict that the equilibrium geometries of both neutral MC3 and their anions are cyclic structures with C2v symmetry. The Mulliken charge and spin populations of MC3 and their anions have also been calculated, and it is found the electron charge changes mainly take place on the M atoms from anions to neutral molecules. The low-lying excited states for the clusters are calculated with time-dependent DFT to assign the features of the photoelectron spectra. Our results agree well with the available experimental and theoretical data.

PACS.

36.40.Mr Spectroscopy and geometrical structure of clusters 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals 71.15.Mb Density functional theory, local density approximation, gradient and other corrections 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.C. Guo, S. Wei, J. Purnell, S. Buzza, A.W. Castleman Jr, Science 256, 515 (1992) ADSGoogle Scholar
  2. B.V. Reddy, S.N. Khanna, P. Jena, Science 258, 1640 (1992) ADSGoogle Scholar
  3. L.S. Wang, S. Li, H.B. Wu, J. Phys. Chem. 100, 19211 (1996) CrossRefGoogle Scholar
  4. B.C. Guo, K.P. Kerns, A.W. Castleman Jr, Science 255, 1411 (1992) ADSGoogle Scholar
  5. J.S. Pilgrim, M.A. Duncan, J. Am. Chem. Soc. 115, 6958 (1993) CrossRefGoogle Scholar
  6. M.-M. Rohmer, M. Bénard, J.-M. Poblet, Chem. Rev. 100, 495 (2000) CrossRefGoogle Scholar
  7. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993) CrossRefADSGoogle Scholar
  8. M.A. Duncan, J. Cluster Sci. 8, 239 (1997) CrossRefGoogle Scholar
  9. S. Iijima, T. Ichihashi, Nature 363, 603 (1993) CrossRefADSGoogle Scholar
  10. X. Li, L.-S. Wang, J. Chem. Phys. 111, 8389 (1999) CrossRefADSGoogle Scholar
  11. L.-S. Wang, X. Li, J. Chem. Phys. 112, 3602 (2000) CrossRefADSGoogle Scholar
  12. S. Roszak, K. Balasubramanian, J. Phys. Chem. A 101, 2666 (1997) CrossRefGoogle Scholar
  13. M.F.A. Hendrickx, S. Clima, Chem. Phys. Lett. 388, 284 (2004) CrossRefGoogle Scholar
  14. Z. Cao, J. Mol. Struct. (Theochem) 365, 211 (1996) CrossRefGoogle Scholar
  15. B.K. Nash, B.K. Rao, P. Jena, J. Chem. Phys. 105, 11020 (1996) CrossRefADSGoogle Scholar
  16. M.F.A. Hendrickx, S. Clima, Chem. Phys. Lett. 388, 290 (2004) CrossRefGoogle Scholar
  17. A.V. Arbuznikov, M. Hendrickx, Chem. Phys. Lett. 320, 575 (2000) CrossRefGoogle Scholar
  18. R. Sumathi, M. Hendrickx, Chem. Phys. Lett. 287, 496 (1998) CrossRefGoogle Scholar
  19. B.V. Reddy, S.N. Khanna, J. Phys. Chem. 98, 9446 (1994) CrossRefGoogle Scholar
  20. K. Tono, A. Terasaki, T. Ohta, T. Kondow, Chem. Phys. Lett. 351, 135 (2002) CrossRefGoogle Scholar
  21. S. Roszak, D. Majumdar, K. Balasubramanian, J. Chem. Phys. 116, 10238 (2002) CrossRefADSGoogle Scholar
  22. Z. Cao, Q. Zhang, Int. J. Quant. Chem. 93, 275 (2003) CrossRefGoogle Scholar
  23. M.V. Ryzhkov, A.L. Ivanovskii, B.T. Delley, Chem. Phys. Lett. 404, 400 (2005) CrossRefGoogle Scholar
  24. R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8218 (1998) CrossRefADSGoogle Scholar
  25. R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996) CrossRefGoogle Scholar
  26. M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108, 4439 (1998) CrossRefADSGoogle Scholar
  27. S. Hirata, T.J. Lee, M. Head-Gordon, J. Chem. Phys. 111, 8904 (1999) CrossRefADSGoogle Scholar
  28. S.J.A. van Gisbergen, A. Rosa, G. Ricciardi, E.J. Baerends, J. Chem. Phys. 111, 2499 (1999) CrossRefADSGoogle Scholar
  29. A. Rosa, E.J. Baerends, S.J.A. van Gisbergen, E. van Lenthe, J.A. Groeneveld, J.G. Snijders, J. Am. Chem. Soc. 121, 10356 (1999) CrossRefGoogle Scholar
  30. S.J.A. van Gisbergen, J.A. Groeneveld, A. Rosa, J.G. Snijiders, E.J. Baerends, J. Phys. Chem. A 103, 6835 (1999) CrossRefGoogle Scholar
  31. E. Broclawik, T. Borowski, Chem. Phys. Lett. 399, 433 (2001) CrossRefGoogle Scholar
  32. B. Dai, K. Deng, J. Yang, Q. Zhu, J. Chem. Phys. 118, 9608 (2003) CrossRefADSGoogle Scholar
  33. M.J. Frisch et al., Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2003 Google Scholar
  34. A.D. Becke, J. Chem. Phys. 98, 5648 (1993) CrossRefADSGoogle Scholar
  35. E. Broclawik, T. Borowski, Chem. Phys. Lett. 339, 433 (2001) CrossRefGoogle Scholar
  36. F.S. Legge, G.L. Nyberg, J.B. Peel, J. Phys. Chem. A 105, 7905 (2001) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • Y. Yuan
    • 1
    • 2
  • K. Deng
    • 1
    • 2
    Email author
  • Y. Liu
    • 1
    • 2
  • C. Tang
    • 1
    • 2
  • G. Lu
    • 1
    • 2
  • J. Yang
    • 2
  • X. Wang
    • 1
  1. 1.Department of Applied Physics and Material Chemistry Laboratory, Nanjing University of Science and TechnologyNanjingP.R. China
  2. 2.Laboratory of Bond Selective Chemistry, University of Science and Technology of ChinaAnhuiP.R. China

Personalised recommendations