Advertisement

Entanglement of Fermi gases in a harmonic trap

  • X. X. YiEmail author
Quantum Optics and Quantum Information

Abstract.

For both cases with and without interactions, bipartite entanglement of two fermions from a Fermi gas in a trap is investigated. We show how the entanglement depends on the locations of the two fermions and the total particle number of the Fermi gas. Fermions at the edge of trap have longer entanglement distance (beyond it, the entanglement disappears) than those in the center. We derive a lower limitation to the average overlapping for two entangled fermions in the BCS ground state, it is shown to be \(\sqrt{Q/2M}\), a function of Cooper pair number Q and the total number of occupied energy levels M.

PACS.

03.67.Mn Entanglement production, characterization, and manipulation 03.65.Ud Entanglement and quantum nonlocality 05.30.Fk Fermion systems and electron gas 74.20.Fg BCS theory and its development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bouwmeester, A. Ekert, A. Zeilinger, The physics of quantum information, Quantum cryptography, Quantum teleportation, Quantum computation (Springer-Verlag, Berlin, 2000) Google Scholar
  2. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000) Google Scholar
  3. V. Vedral, Centr. Eur. J. Phys. 2, 289 (2003) Google Scholar
  4. S. Oh, J. Kim, Phys. Rev. A 69, 054305 (2004) CrossRefADSGoogle Scholar
  5. C. Lunkes, C. Brukner, V. Vedral, Phys. Rev. Lett. 95, 030503 (2005) CrossRefADSGoogle Scholar
  6. D. Cavalcanti, M.F. Santos, M.O. Terra Cunha, C. Lunkes, V. Vedral, Phys. Rev. A 72, 062307 (2005) CrossRefADSGoogle Scholar
  7. V.E. Korepin, Phys. Rev. Lett. 92, 096402 (2004) CrossRefADSGoogle Scholar
  8. C. Lunkes, C. Brukner, V. Vedral, Phys. Rev. A 71, 034309 (2005) CrossRefADSGoogle Scholar
  9. V. Vedral, New J. Phys. 6, 22 (2004) CrossRefADSGoogle Scholar
  10. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1997) CrossRefADSGoogle Scholar
  11. In the light of well-established and elementary many-body physics, this can be understood as follows. For a free Fermi gas in one spatial direction, the particle density n and the Fermi momentum kf are related via n=2kf/π. Thus, the larger the density, the larger kf, and in turn, the shorter the entanglement distance. Also the observation that the entanglement between two particles depend on both their coordinates and not just on their diffenence, is an consequence of the lack of translational symmetry in the harmonic trap. Google Scholar
  12. R.K. Pathria, Statistical mechanics (Elsevier, 2001) Google Scholar
  13. J. Dukelsky, G. Sierra, Phys. Rev. B 61, 12302 (2000) CrossRefADSGoogle Scholar
  14. J. von Delft, D.C. Ralph, Phys. Rep. 345, 61 (2001) zbMATHCrossRefADSGoogle Scholar
  15. J. von Delft et al., Phys. Rev. Lett. 77, 3189 (1996) CrossRefGoogle Scholar
  16. C. Dunning, J. Links, H.Q. Zhou, Phys. Rev. Lett. 94, 227002 (2005) CrossRefADSGoogle Scholar
  17. A. Peres, Phys. Lett. A 202, 16 (1995) zbMATHMathSciNetCrossRefADSGoogle Scholar
  18. F. Braun et al., Phys. Rev. Lett. 79, 921 (1997) CrossRefGoogle Scholar
  19. S. Dusuel, J. Vidal, Phys. Rev. A 71, 060304 (2005) CrossRefADSGoogle Scholar
  20. M.A. Martin-Delgado, e-print arXiv:quant-ph/0207026 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of physicsDalian University of TechnologyDalianP.R. China

Personalised recommendations