Cold collisions in strong laser fields: partial wave analysis of magnesium collisions

  • J. PiiloEmail author
  • E. Lundh
  • K.-A. Suominen
Atomic and Molecular Collisions


We have developed Monte Carlo wave function simulation schemes to study cold collisions between magnesium atoms in a strong red-detuned laser field. In order to address the strong-field problem, we extend the Monte Carlo wave function framework to include the partial wave structure of the three-dimensional system. The average heating rate due to radiative collisions is calculated with two different simulation schemes which are described in detail. We show that the results of the two methods agree and give estimates for the radiative collision heating rate for 24Mg atoms in a magneto-optical trap based on the 1S01P1 atomic laser cooling transition.


32.80.Lg Mechanical effects of light on atoms, molecules, and ions 32.80.Pj Optical cooling of atoms; trapping 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps 02.70.Uu Applications of Monte Carlo methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H.J. Metcalf, P. van der Straten, J. Opt. Soc. Am. B 20, 887 (2003) ADSGoogle Scholar
  2. M.H. Anderson, J.H. Ensher, M.R. Mattews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995); K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995); C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995) ADSGoogle Scholar
  3. B. DeMarco, D.S. Jin, Science 285, 1703 (1999) CrossRefGoogle Scholar
  4. A.G. Truscott, K.E. Strecker, W.I. McAlexander, G. Partridge, R.G. Hulet, Science 291, 2570 (2001) CrossRefADSGoogle Scholar
  5. K.-A. Suominen, J. Phys. B 29, 5981 (1996) CrossRefADSGoogle Scholar
  6. J. Weiner, V.S. Bagnato, S. Zilio, P.S. Julienne, Rev. Mod. Phys. 71, 1 (1999) CrossRefADSGoogle Scholar
  7. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2001) Google Scholar
  8. The scattering rate of photons sets the Doppler limit, which is 2 mK for the strong cooling transition 1S01P1 in magnesium, in comparison with the photon recoil limit, 10 μK. In alkali atoms the degeneracy of the ground state allows one to break the Doppler limit and reach the recoil limit with tools like Sisyphus cooling, but this will not work for the alkaline earth atoms that have no such degeneracy Google Scholar
  9. F. Bardou, J.-P. Bouchard, A. Aspect, C. Cohen-Tannoudji, Lévy Statistics and Laser Cooling (Cambridge Univ. Press, Cambridge, 2002) Google Scholar
  10. M. Kasevich, S. Chu, Phys. Rev. Lett. 69, 1741 (1992) CrossRefADSGoogle Scholar
  11. A. Gallagher, D.E. Pritchard, Phys. Rev. Lett. 63, 957 (1989) CrossRefADSGoogle Scholar
  12. P.S. Julienne, F. Mies, J. Opt. Soc. Am. B 6, 2257 (1989) ADSCrossRefGoogle Scholar
  13. P.S. Julienne, J. Vigué, Phys. Rev. A 44, 4464 (1991) CrossRefADSGoogle Scholar
  14. K.-A. Suominen, Y.B. Band, I. Tuvi, K. Burnett, P.S. Julienne, Phys. Rev. A 57, 3724 (1998) CrossRefADSGoogle Scholar
  15. G. Hillenbrand, C.J. Foot, K. Burnett, Phys. Rev. A 50, 1479 (1994) CrossRefADSGoogle Scholar
  16. B.M. Garraway, K.-A. Suominen, Rep. Prog. Phys. 58, 365 (1995); B.M. Garraway, K.-A. Suominen, Contemp. Phys 43, 97 (2002) CrossRefADSGoogle Scholar
  17. H.J. Carmichael, Statistical Methods in Quantum Optics (Springer, Berlin, 2002), Vol. I Google Scholar
  18. J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992); K. Mølmer, Y. Castin, J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993) CrossRefADSGoogle Scholar
  19. M. Machholm, P.S. Julienne, K.-A. Suominen, Phys. Rev. A 64, 033425 (2001) CrossRefADSGoogle Scholar
  20. K. Sengstock, U. Sterr, J.H. Müller, V. Rieger, D. Bettermann, W. Ertmer, Appl. Phys. B 59, 99 (1994) CrossRefADSGoogle Scholar
  21. D.N. Madsen, J.W. Thomsen, J. Phys. B. 35, 2173 (2002) CrossRefADSGoogle Scholar
  22. J. Piilo, E. Lundh, K.-A. Suominen, Phys. Rev. A 70, 013410 (2004) MathSciNetCrossRefADSGoogle Scholar
  23. W.J. Meath, J. Chem. Phys. 48, 227 (1968) CrossRefADSGoogle Scholar
  24. W.J. Stevens, M. Krauss, J. Chem. Phys. 67, 1977 (1977) CrossRefADSGoogle Scholar
  25. E. Czuchaj, M. Krośnicki, H. Stoll, Theor. Chem. Acc. 107, 27 (2001) Google Scholar
  26. M. Holland, K.-A. Suominen, K. Burnett, Phys. Rev. Lett. 72, 2367 (1994); M. Holland, K.-A. Suominen, K. Burnett, Phys. Rev. A 50, 1513 (1994) CrossRefADSGoogle Scholar
  27. In fact in simulations we also determine from which particular state j the collapse originated, and along which branch it took place, so after a jump only one ground state partial wave is occupied Google Scholar
  28. J. Piilo, K.-A. Suominen, K. Berg-Sørensen, J. Phys. B 34, L231 (2001); Phys. Rev. A 65, 033411 (2002) CrossRefGoogle Scholar
  29. J. Piilo, K.-A. Suominen, Phys. Rev. A 66, 013401 (2002) CrossRefADSGoogle Scholar
  30. When the Landau-Zener process saturates and re-excitation dominates, we can assume the delayed decay model Suominen98, where the exponential decay starts only once the quasimolecule has reached the edge of the re-excitation zone. The location of this edge is roughly where |U(R)-U(RC)|≃Ω, so the energy increase obtained by the quasimolecule before the exponential decay is proportional to Ω. Google Scholar
  31. X. Xu, T.H. Loftus, M.J. Smith, J.L. Hall, A. Gallagher, J. Ye, Phys. Rev. A 66, 011401(R) (2002) CrossRefADSGoogle Scholar
  32. F.Y. Loo, A. Brusch, S. Sauge, M. Allegrini, E. Arimondo, N. Andersen, J.W. Thomsen, J. Opt. B: Quant. Semiclass. Opt. 6, 81 (2004) CrossRefADSGoogle Scholar
  33. T. Chanelière, J.-L. Meunier, R. Kaiser, C. Miniatura, D. Wilkowski, J. Opt. Soc. Am. B 22, 1819 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TurkuTurun yliopistoFinland
  2. 2.Department of PhysicsUmeå UniversityUmeåSweden

Personalised recommendations