Size dependence of freezing temperature and structure instability in simulated Lennard-Jones clusters

  • W. PolakEmail author
Clusters and Nanostructures


Liquid Lennard-Jones clusters of 14 different sizes from N=55 to 923 particles were cooled down to find their temperature of liquid-solid transition and the internal structure of the solidified clusters. The decrease of the cluster temperature was attained by a gradual change of the system temperature in Monte Carlo simulations. The liquid-to-solid transition was found by analysis of the specific heat as well as by detection of the structural units of face-centred cubic, hexagonal close-packed and decahedral type. It was observed that near the detected transition temperature the solid-like cluster structure is not always stable and fluctuates between solid and liquid states. The fluctuations of the state were observed frequently for small clusters with N ≤147, where the temporary solid structure is created by a large part of internal atoms. Manual inspection of cluster structural data and the 10%N condition for minimal number of atoms as centres of solid-like units enable detection of stable cluster solidification at freezing temperature. It was found that the freezing temperature of all clusters, with the exception of N=55, decreases linearly with N-1/3. The extrapolated freezing temperature of the bulk LJ system is 13% lower than the experimental value of argon. After freezing, the solid phase remains but some atoms close to the cluster surface are not firmly included into the structure and oscillate mainly between solid structure and disordered one.


36.40.-c Atomic and molecular clusters 64.70.Dv Solid-liquid transitions 61.46.+w Cluster structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Pawlow, Z. Phys. Chem. 65, 1 (1909) Google Scholar
  2. C.L. Briant, J.J. Burton, J. Chem. Phys. 63, 2045 (1975) CrossRefADSGoogle Scholar
  3. F. Celestini, R.J.-M. Pellenq, P. Bordarier, B. Rousseau, Z. Phys. D 37, 49 (1996) CrossRefGoogle Scholar
  4. A. Rytkönen, S. Valkealahti, M. Manninen, J. Chem. Phys. 108, 5826 (1998) CrossRefADSGoogle Scholar
  5. J. Gspann, Z. Phys. D: At. Mol. Clust. 3, 143 (1986) CrossRefGoogle Scholar
  6. L.S. Bartell, J. Huang, J. Phys. Chem. 98, 7455 (1994) CrossRefGoogle Scholar
  7. M. Schmidt, R. Kusche, B. von Issendorff, H. Haberland, Nature 393, 238 (1998) CrossRefADSGoogle Scholar
  8. T.P. Martin, U. Näher, H. Schaber, U. Zimmermann, J. Chem. Phys. 100, 2322 (1994) CrossRefADSGoogle Scholar
  9. B.W. van de Waal, The fcc/hcp Dilemma (B.W. van de Waal, Twente, 1997) Google Scholar
  10. T. Ikeshoji, G. Torchet, M.-F. de Feraudy, K. Koga, Phys. Rev. E 63, 031101 (2001) CrossRefADSGoogle Scholar
  11. F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005) CrossRefADSGoogle Scholar
  12. J. Farges, M.-F. de Feraudy, B. Raoult, G. Torchet, J. Chem. Phys. 84, 3491 (1986) CrossRefADSGoogle Scholar
  13. E.T. Verkhovtseva, I.A. Gospodarev, A.V. Grishaev, S.I. Kovalenko, D.D. Solnyshkin, E.S. Syrkin, S.B. Feodos'ev, Low Temp. Phys. 29, 386 (2003) CrossRefGoogle Scholar
  14. P. Shah, S. Roy, C. Chakravarty, J. Chem. Phys. 118, 10671 (2003) CrossRefADSGoogle Scholar
  15. R.S. Berry, J. Jellinek, G. Natanson, Phys. Rev. A 30, 919 (1984) CrossRefADSGoogle Scholar
  16. L.J. Lewis, P. Jensen, J.-L. Barrat, Phys. Rev. B 56, 2248 (1997) CrossRefADSGoogle Scholar
  17. S. Valkealahti, M. Manninen, J. Phys.: Cond. Matter 9, 4041 (1997) CrossRefADSGoogle Scholar
  18. S.C. Hendy, B.D. Hall, Phys. Rev. B 64, 085425 (2001) CrossRefADSGoogle Scholar
  19. H.-S. Nam, N.M. Hwang, B.D. Yu, J.-K. Yoon, Phys. Rev. Lett. 89, 275502 (2002) CrossRefADSGoogle Scholar
  20. F. Baletto, C. Mottet, R. Ferrando, Chem. Phys. Lett. 354, 82 (2002) CrossRefGoogle Scholar
  21. X.L. Zhu, X.Z. You, R.G. Xiong, Z.H. Zhou, Chem. Phys. 269, 243 (2001) CrossRefGoogle Scholar
  22. J. Huang, L.S. Bartell, J. Phys. Chem. 106, 2404 (2002) Google Scholar
  23. K.E. Kinney, S. Xu, L.S. Bartell, J. Phys. Chem. 100, 6935 (1996) CrossRefGoogle Scholar
  24. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987) CrossRefGoogle Scholar
  25. N. Quirke, Mol. Simul. 1, 249 (1988) Google Scholar
  26. Z.H. Jin, H.W. Sheng, K. Lu, Phys. Rev. B 60, 141 (1999) CrossRefADSGoogle Scholar
  27. W. Polak, A. Patrykiejew, Phys. Rev. B 67, 115402 (2003) CrossRefADSGoogle Scholar
  28. C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, New York, 1976), Chap. 3 Google Scholar
  29. S. Sugano, Microcluster Physics (Springer Verlag, Berlin Heidelberg, 1991) Google Scholar
  30. R.S. Berry, Melting and Freezing of Clusters: How They Happen and What They Mean, in: Clusters of Atoms and Molecules I, edited by H. Haberland (Springer, Berlin, 1995), Chap. 2.8 Google Scholar
  31. R.S. Berry, Microscale Therm. Eng. 1, 1 (1997) zbMATHCrossRefGoogle Scholar
  32. H. Matsuoka, T. Hirokawa, M. Matsui, M. Doyama, Phys. Rev. Lett. 69, 297 (1992) CrossRefADSGoogle Scholar
  33. D. Schebarchov, S.C. Hendy, J. Chem. Phys. 123, 104701 (2005) CrossRefGoogle Scholar
  34. W. Polak, Evidence for size-transition in internal structure of frozen Lennard-Jones clusters, in preparation Google Scholar
  35. H.-S. Nam, N.M. Hwang, B.D. Yu, D.-Y. Kim, J.-K Yoon, Phys. Rev. B 71, 233401 (2005) CrossRefADSGoogle Scholar
  36. P.R. ten Wolde, M.J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Applied PhysicsInstitute of Physics, Lublin University of TechnologyLublinPoland

Personalised recommendations