Advertisement

Line strength measurements for near-infrared intersystem transitions of NI

  • A. BacławskiEmail author
  • T. Wujec
  • J. Musielok
Atomic Physics

Abstract.

Intensities of 15 intersystem transitions and 5 LS allowed multiplets of neutral nitrogen (NI) from infrared part of the spectrum were measured by emission spectroscopy method. All allowed as well as LS-forbidden spectral lines belong to the 3p-3d transition array. The nitrogen spectra were excited in a wall-stabilized high-current arc ran in helium with small admixture of nitrogen. On the basis of these line (multiplet) intensity measurements, transition probabilities of 15 intersystem lines were determined relative to transition probabilities of appropriately chosen allowed multiplets. Finally the relative data for intersystem transitions were normalized to an absolute scale by applying reference multiplet strength values recommended by the Atomic Spectroscopy Group of NIST. The determined line strengths are compared with available calculated and — in the case of 5 transitions — also with experimental data.

PACS.

32.70.Cs Oscillator strengths, lifetimes, transition moments 32.70.Fw Absolute and relative intensities 52.70.Kz Optical (ultraviolet, visible, infrared) measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Brage, A. Hibbert, D.S. Leckrone, Astrophys. J. 478, 423 (1997) CrossRefADSGoogle Scholar
  2. V.H.S. Kwong, Z. Fang, T.T. Gibbons, Astrophys. J. 411, 431 (1993) CrossRefADSGoogle Scholar
  3. R.R. Meier, Space Sci. Rev. 58, 1 (1991) CrossRefADSGoogle Scholar
  4. G.D. Sandlin, J.-D.F. Bartoe, G.E. Brueckner, R. Tousey, M.E. van Hoosier, Astrophys. J. Suppl. Ser. 61, 801 (1986) CrossRefADSGoogle Scholar
  5. G.S. Rossano, P. Erwin, R.C. Puetter, W.A. Feibelman, Astron. J. 107, 1128 (1994) CrossRefADSGoogle Scholar
  6. A. Hibbert, E. Biemont, M. Godefroid, N. Vaeck, Astron. Astrophys. Suppl. Ser. 88, 505 (1991) ADSGoogle Scholar
  7. R.L. Kurucz, B. Bell, Atomic Line Data Kurucz CD-ROM No. 23 (Cambridge, Mass.: Smithsonian Astrophysical Observatory, 1995) Google Scholar
  8. D.J.R. Robinson, A. Hibbert, J. Phys. B 30, 4813 (1997) CrossRefADSGoogle Scholar
  9. S.S. Tayal, C.A. Beatty, Phys. Rev. A 59, 3622 (1999) CrossRefADSGoogle Scholar
  10. N.W. Zheng, T. Wang, R. Yang, Y. Wu, J. Chem. Phys. 112, 7042 (2000) CrossRefADSGoogle Scholar
  11. N.W. Zheng, T. Wang, Chem. Phys. 282, (2002) 31 Google Scholar
  12. G.I. Tachiev, C. Froese Fischer, Astron. Astrophys. 385, 716 (2002) CrossRefADSGoogle Scholar
  13. S.S. Tayal, O. Zatsarinny, J. Phys. B 38, 3631 (2005) CrossRefADSGoogle Scholar
  14. S.S. Tayal, Astrophys. J. Suppl. Ser. 163, 207 (2006) CrossRefADSGoogle Scholar
  15. C. Goldbach, G. Nollez, Astron. Astrophys. 201, 189 (1988) ADSGoogle Scholar
  16. J. Musielok, W.L. Wiese, G. Veres, Phys. Rev. A 53, 3588 (1995) CrossRefADSGoogle Scholar
  17. A. Bacławski, T. Wujec, J. Musielok, Phys. Scripta 64, 314 (2001) CrossRefADSGoogle Scholar
  18. A. Bacławski, T. Wujec, J. Musielok, Phys. Scripta 65, 28 (2002) CrossRefADSGoogle Scholar
  19. T. Wujec, A. Bacławski, A. Golly, I. Książek, Acta Phys. Pol. A 96, 333 (1999) Google Scholar
  20. H.R. Griem, Spectral line broadening by plasmas (Academic Press, New York, 1974) Google Scholar
  21. R. Rompe, M. Steenbeck, Progress in Plasmas and Gas Electronics (Akademie-Verlag, Berlin 1975), Vol. 1 Google Scholar
  22. H.W. Drawin, Z. Phys. 228, 99 (1969) CrossRefGoogle Scholar
  23. W.L. Wiese, J.R. Fuhr, T.M. Deters, Atomic transition probabilities of carbon, nitrogen and oxygen: a critical data compilation (J. Phys. Chem. Ref. Data, Monograph 7, 1996) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Physics, Opole UniversityOpolePoland

Personalised recommendations