Threshold behavior of semi-linear photorefractive oscillator

  • P. Mathey
  • M. Grapinet
  • H. R. Jauslin
  • B. Sturman
  • D. Rytz
  • S. Odoulov
Optical Physics

Abstract.

A general analysis of the threshold behavior for the photorefractive semi-linear oscillator is performed within the linear approximation on the basis of the classical wave-coupling model. This analysis shows that the well known particular results on the frequency degenerate oscillation are valid only within a restricted range of the external parameters. The theory specifies the conditions for onset and properties of the frequency non-degenerate oscillations, including the necessary values of the coupling strength, pump intensity ratio, the increments of the instability, and the frequency splits. Important generalizations of the basic model are considered.

PACS.

42.65.Hw Phase conjugation; photorefractive and Kerr effects 05.45.-a Nonlinear dynamics and chaos 42.65.Pc Optical bistability, multistability, and switching, including local field effects 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Cronin-Golomb, B. Fisher, J.O. White, A. Yariv, IEEE J. Quant. Electron. QE-20, 12 (1984) Google Scholar
  2. S. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quant. Electron. QE-20, 1508 (1986) Google Scholar
  3. Photorefractive Materials and Their Applications, I, edited by P. Günter, J.-P. Huignard, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989) Google Scholar
  4. S. Odoulov, M. Soskin, A. Khyzhnyak, Optical Coherent Oscillators with Degenerate Four-Wave Mixing (Harwood Academic Publishers, Chur, London, 1991) Google Scholar
  5. L. Solymar, D.J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford, Clarendon Press, 1996) Google Scholar
  6. J. Feinberg, R. Hellwarth, Opt. Lett. 5, 519 (1980) ADSGoogle Scholar
  7. F.T. Arecchi, G. Giacomelli, P.L. Ramazza, S. Residori, Phys. Rev. Lett. 65, 2531 (1990) CrossRefADSGoogle Scholar
  8. S.R. Liu, G. Indebetouw, J. Opt. Soc. Am. B 9, 1507 (1992) ADSCrossRefGoogle Scholar
  9. K. Staliunas, M.F.H. Tarroja, G. Slekys, C.O. Weiss, L. Dambly, Phys. Rev. A 51, 4140 (1995) CrossRefADSGoogle Scholar
  10. C. Denz, M. Schwab, M. Sedlatschek, T. Tschudi, T. Honda, J. Opt. Soc. Am. B 15, 2057 (1998) ADSGoogle Scholar
  11. P. Mathey, Appl. Phys. B 80, 463 (2005) CrossRefADSGoogle Scholar
  12. P. Mathey, S. Odoulov, D. Rytz, Phys. Rev. Lett. 89, 053901 (2002) CrossRefADSGoogle Scholar
  13. P. Mathey, S. Odoulov, D. Rytz, J. Opt. Soc. Am. B 19, 2967 (2002) ADSGoogle Scholar
  14. M. Grapinet, P. Mathey, S. Odoulov, D. Rytz, Appl. Phys. B 79, 345 (2004) CrossRefGoogle Scholar
  15. H. Haaken, Synergetics (Springer-Verlag, Berlin, 1978) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • P. Mathey
    • 1
  • M. Grapinet
    • 1
  • H. R. Jauslin
    • 1
  • B. Sturman
    • 2
  • D. Rytz
    • 3
  • S. Odoulov
    • 4
  1. 1.Laboratoire de Physique de l'Université de Bourgogne, UMR CNRS 5027DijonFrance
  2. 2.Institute of Automation and Electrometry, Russian Academy of SciencesNovosibirskRussia
  3. 3.Forschunginstitute für mineralische and metallische Werkstoffe, Edelsteine/Edelmetalle GmbH, Struhtstrasse 2, WackenmühleIdar-ObersteinGermany
  4. 4.Institute of Physics, National Academy of SciencesKievUkraine

Personalised recommendations