Advertisement

Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements

  • F.-G. DengEmail author
  • X.-H. Li
  • C.-Y. Li
  • P. Zhou
  • H.-Y. Zhou
Quantum Optics and Quantum Information

Abstract.

Two schemes for sharing an arbitrary two-qubit state based on entanglement swapping are proposed with Bell-state measurements and local unitary operations. One is based on the quantum channel with four Einstein-Podolsky-Rosen (EPR) pairs shared in advance. The other is based on a circular topological structure, i.e., each user shares an EPR pair with his neighboring one. The advantage of the former is that the construction of the quantum channel between the agents is controlled by the sender Alice, which will improve the security of the scheme. The circular scheme reduces the quantum resource largely when the number of the agents is large. Both of those schemes have the property of high efficiency as almost all the instances can be used to split the quantum information. They are more convenient in application than the other schemes existing as they require only two-qubit entanglements and two-qubit joint measurements for sharing an arbitrary two-qubit state.

PACS.

03.67.Hk Quantum communication 03.67.Dd Quantum cryptography 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.R. Blakley, in Proceedings of the American Federation of Information Processing 1979 National Computer Conference (American Federation of Information Processing, Arlington, VA, 1979), pp. 313-317; A. Shamir, Commun. ACM 22, 612 (1979) CrossRefGoogle Scholar
  2. M. Hillery, V. Bužek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999) MathSciNetCrossRefADSGoogle Scholar
  3. A. Karlsson, M. Koashi, N. Imoto, Phys. Rev. A 59, 162 (1999) CrossRefADSGoogle Scholar
  4. L. Xiao et al., Phys. Rev. A 69, 052307 (2004); F.G. Deng, H.Y. Zhou, G.L. long, Phys. Lett. A 337, 329 (2005); F.G. Deng, G.L. Long, H.Y. Zhou, Phys. Lett. A 340, 43 (2005); F.G. Deng et al., Chin. Phys. Lett. 21, 2097 (2004) CrossRefGoogle Scholar
  5. G.P. Guo, G.C. Guo, Phys. Lett. A 310, 247 (2003) zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. F.L. Yan, T. Gao, Phys. Rev. A 72, 012304 (2005) CrossRefADSGoogle Scholar
  7. A. Cabello, e-print arXiv:quant-ph/0009025 Google Scholar
  8. C.P. Yang, J. Gea-Banacloche, J. Opt. B: Quant. Semiclass. Opt. 3, 407 (2001) CrossRefADSGoogle Scholar
  9. Z.J. Zhang, Z.X. Man, Phys. Rev. A 72, 022303 (2005) MathSciNetCrossRefADSGoogle Scholar
  10. D. Gottesman, Phys. Rev. A 61, 042311 (2000) MathSciNetCrossRefADSGoogle Scholar
  11. R. Cleve, D. Gottesman, H.K. Lo, Phys. Rev. Lett. 83, 648 (1999) CrossRefADSGoogle Scholar
  12. Z.J. Zhang, Phys. Lett. A 342, 60 (2005) CrossRefADSGoogle Scholar
  13. S. Bandyopadhyay, Phys. Rev. A 62, 012308 (2000) MathSciNetCrossRefADSGoogle Scholar
  14. V. Karimipour, A. Bahraminasab, S. Bagherinezhad, Phys. Rev. A 65, 042320 (2002) CrossRefADSGoogle Scholar
  15. Z.J. Zhang, Y.Li, Z.X. Man, Phys. Rev. A 71, 044301 (2005); F.G. Deng, X.H. Li, H.Y. Zhou, Z. Zhang, Phys. Rev. A 72, 044302 (2005) MathSciNetCrossRefADSGoogle Scholar
  16. Y.M. Li, K.S. Zhang, K.C. Peng, Phys. Lett. A 324, 420 (2004) MathSciNetCrossRefADSGoogle Scholar
  17. F.G. Deng, X.H. Li, C.Y. Li, P. Zhou, H.Y. Zhou, Phys. Rev. A 72, 044301 (2005) CrossRefADSGoogle Scholar
  18. F.G. Deng, C.Y. Li, Y.S. Li, H.Y. Zhou, Y. Wang, Phys. Rev. A 72, 022338 (2005) CrossRefADSGoogle Scholar
  19. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002) CrossRefADSGoogle Scholar
  20. D. Bouwmeester, J.W. Pan, M. Daniell, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 82, 1345 (1999) zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. J.W. Pan, M. Daniell, S. Gasparoni, G. Weihs, A. Zeilinger, Phys. Rev. Lett. 86, 4435 (2001) CrossRefADSGoogle Scholar
  22. Z. Zhao, Y.A. Chen, A.N. Zhang, T. Yang, H.J. Briegel, J.W. Pan, Nature 430, 54 (2004) CrossRefADSGoogle Scholar
  23. A. Cabello, Phys. Rev. A 61, 052312 (2000) CrossRefADSGoogle Scholar
  24. F.G. Deng, G.L. Long, X.S. Liu, Phys. Rev. A 68, 042317 (2003) CrossRefADSGoogle Scholar
  25. F.G. Deng, G.L. Long, Phys. Rev. A 69, 052319 (2004); F.G. Deng, G.L. Long, e-print arXiv:quant-ph/0408102 CrossRefADSGoogle Scholar
  26. C. Wang et al., Phys. Rev. A 71, 044305 (2005) CrossRefGoogle Scholar
  27. C.P. Yang, G.C. Guo, Phys. Rev. A 59, 4217 (1999) CrossRefADSGoogle Scholar
  28. M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993) CrossRefADSGoogle Scholar
  29. S. Bose, V. Vedral, P.L. Knight, Phys. Rev. A 57, 822 (1998) CrossRefADSGoogle Scholar
  30. J.W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 80, 3891 (1998) zbMATHMathSciNetCrossRefADSGoogle Scholar
  31. A. Karlsson, M. Bourennane, Phys. Rev. A 58, 4394 (1998) MathSciNetCrossRefADSGoogle Scholar
  32. F.L. Yan, D. Wang, Phys. Lett. A 316, 297 (2003) zbMATHMathSciNetCrossRefADSGoogle Scholar
  33. C.P. Yang, Shih-I Chu, S.Han, Phys. Rev. A 70, 022329 (2004) CrossRefADSGoogle Scholar
  34. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, UK, 2000) Google Scholar
  35. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996) CrossRefADSGoogle Scholar
  36. M. Murao, M.B. Plenio, S. Popescu, V. Vedral, P.L. Knight, Phys. Rev. A 57, R4075 (1998) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • F.-G. Deng
    • 1
    • 2
    • 3
    Email author
  • X.-H. Li
    • 1
    • 2
  • C.-Y. Li
    • 1
    • 2
  • P. Zhou
    • 1
    • 2
  • H.-Y. Zhou
    • 1
    • 2
    • 3
  1. 1.The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal UniversityBeijingP.R. China
  2. 2.and Department of Material Science and Engineering, Beijing Normal UniversityInstitute of Low Energy Nuclear PhysicsBeijingP.R. China
  3. 3.Beijing Radiation CenterBeijingP.R. China

Personalised recommendations