Advertisement

Hyperthermal cluster-surface scattering

Comparison of fragmentation, energy redistribution, and sticking in atomic and molecular clusters
  • S. Zimmermann
  • H. M. UrbassekEmail author
Clusters and Nanostructures

Abstract.

Using molecular-dynamics simulation, we study the processes occurring after impact of clusters on a rigid wall. Comparing the impact of model clusters consisting of 13 atoms, or of 13 diatomic molecules with varied bond strength, the systematics in the results of the collision process are investigated. Four regimes of impact-induced cluster fragmentation are identified: intact reflection, shattering into large fragments, complete fragmentation, and molecule dissociation. The effect of the number of degrees of freedom activated in the collision on the translational and internal energies of the reflected fragments is discussed in detail. As a rule, with increasing number of degrees of freedom which can be activated in the collision, the translational energy sinks. On the other hand, for weak intramolecular bonding, intramolecular vibrations are easily excited at small impact energies, reducing the resulting translational energy. The presence of even a very weak attractive well epsilonw at the surface has a major influence on the sticking behavior of the clusters — and hence also on the absolute reflected energies — even at impact energies E0 ≫ epsilonw.

PACS.

68.49.Fg Cluster scattering from surfaces 36.40.-c Atomic and molecular clusters 79.20.Ap Theory of impact phenomena; numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.L. Cleveland, U. Landman, Science 257, 355 (1992) ADSGoogle Scholar
  2. B. Gergen, H. Nienhaus, W.H. Weinberg, E.W. McFarland, Science 294, 2521 (2001) CrossRefADSGoogle Scholar
  3. W. Harbich, in Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry (Springer, Berlin, 2000), Springer Series in Cluster Physics, p. 107 Google Scholar
  4. H.-P. Cheng, U. Landman, Science 260, 1304 (1993) ADSGoogle Scholar
  5. I. Yamada, J. Matsuo, Z. Insepov, T. Aoki, T. Seki, N. Toyoda, Nucl. Instrum. Meth. B 164-165, 944 (2000) Google Scholar
  6. W. Christen, U. Even, J. Phys. Chem. A 102, 9420 (1998) CrossRefGoogle Scholar
  7. F.O. Goodman, H.Y. Wachman, Dynamics of gas-surface scattering (Academic Press, New York, 1976) Google Scholar
  8. C.T. Rettner, M.N.R. Ashfold, Dynamics of gas-surface interactions (Royal Society of Chemistry, Cambridge, 1991) Google Scholar
  9. R.M. Logan, R.E. Stickney, J. Chem. Phys. 44, 195 (1966) CrossRefADSGoogle Scholar
  10. R.M. Logan, J.C. Keck, J. Chem. Phys. 49, 860 (1968) CrossRefADSGoogle Scholar
  11. H. Gades, H.M. Urbassek, Appl. Phys. A 61, 39 (1995) ADSGoogle Scholar
  12. A. Tomsic, P.U. Andersson, N. Markovic, J.B.C. Pettersson, J. Chem. Phys. 119, 4916 (2003) CrossRefADSGoogle Scholar
  13. A. Tomsic, H. Schröder, K.-L. Kompa, C.R. Gebhardt, J. Chem. Phys. 119, 6314 (2003) CrossRefADSGoogle Scholar
  14. W. Christen, U. Even, T. Raz, R.D. Levine, J. Chem. Phys. 108, 10262 (1998) CrossRefADSGoogle Scholar
  15. G.-Q. Xu, S.L. Bernasek, J.C. Tully, J. Chem. Phys. 88, 3376 (1988) CrossRefADSGoogle Scholar
  16. J.N. Beauregard, H.R. Mayne, J. Chem. Phys. 99, 6667 (1993) CrossRefADSGoogle Scholar
  17. E. Hendell, U. Even, T. Raz, R.D. Levine, Phys. Rev. Lett. 75, 2670 (1995) CrossRefADSGoogle Scholar
  18. T. Raz, U. Even, R.D. Levine, J. Chem. Phys. 103, 5394 (1995) CrossRefADSGoogle Scholar
  19. W. Christen, U. Even, T. Raz, R.D. Levine, Int. J. Mass Spectrom. Ion Proc. 174, 35 (1998) CrossRefADSGoogle Scholar
  20. I. Schek, T. Raz, R.D. Levine, J. Jortner, J. Chem. Phys. 101, 8596 (1994) CrossRefADSGoogle Scholar
  21. W. Christen, U. Even, Eur. Phys. J. D 9, 29 (1999) CrossRefADSGoogle Scholar
  22. T. Raz, R.D. Levine, J. Chem. Phys. 105, 8097 (1996) CrossRefADSGoogle Scholar
  23. G. Herzberg, Molecular Spectra and Molecular Structure, (van Nostrand, Toronto, 1950), Vol. 1 Google Scholar
  24. A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977) ADSCrossRefGoogle Scholar
  25. T.A. Scott, Phys. Rep. 27, 69 (1976) CrossRefADSGoogle Scholar
  26. C.S. Murthy, K. Singer, M.I. Klein, I.R. McDonald, Molec. Phys. 41, 1387 (1980) CrossRefADSGoogle Scholar
  27. M.R. Hoare, P. Pal, Adv. Phys. 20, 161 (1971) CrossRefADSGoogle Scholar
  28. H. Gades, H.M. Urbassek, Phys. Rev. B 51, 14559 (1995) CrossRefADSGoogle Scholar
  29. S.D. Stoddard, J. Comput. Phys. 27, 291 (1978) CrossRefADSGoogle Scholar
  30. R.D. Levine, R.B. Bernstein, Molecular reaction dynamics and chemical reactivity (Oxford University Press, Osford, 1987) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Fachbereich Physik, Universität KaiserslauternKaiserslauternGermany

Personalised recommendations