Quantum phase transition in the generalized single-mode superradiant model

  • G. ChenEmail author
  • Z.-D. Chen
  • P.-C. Xuan
Quantum Optics and Quantum Information


In this paper we reveal a zero-temperature quantum phase transition for the single-mode superradiant model with the form A2 from the normal to superradiant phase by mean of the Holstein-Primakoff transformation. In the thermodynamic limit, in which the numbers of atoms becomes infinite, the ground state energy and corresponding wavefunctions of both the normal and superradiant phases are obtained and therefore the scaling behavior near the critical transition point is derived.


42.50.Fx Cooperative phenomena in quantum optical systems 73.43.Nq Quantum phase transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.H. Dicke, Phys. Rev. 93, 99 (1954) zbMATHCrossRefADSGoogle Scholar
  2. D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Berlin, 1994) Google Scholar
  3. A. Klein, E.R. Marshalek, Rev. Mod. Phys. 63, 375 (1991) CrossRefADSGoogle Scholar
  4. F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2001) Google Scholar
  5. U. Weiss, Quantum Dissipative Systems, Series of Modern Condensed Matter Physics (World Scientific, Singapore, 1993), Vol. 2 Google Scholar
  6. M. Tavis, F.W. Cummings, Phys. Rev. 170, 379 (1968) CrossRefADSGoogle Scholar
  7. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1949) CrossRefADSGoogle Scholar
  8. K. Hepp, E.H. Lieb, Ann. Phys. (N.Y.) 76, 360 (1973) MathSciNetCrossRefADSGoogle Scholar
  9. Y.K. Wang, F.T. Hioes, Phys. Rev. A 7, 831 (1973) CrossRefADSGoogle Scholar
  10. F.T. Hioes, Phys. Rev. A 8, 1440 (1973) CrossRefADSGoogle Scholar
  11. C. Emary, T. Brandes, Phys. Rev. Lett. 90, 044101 (2003) CrossRefADSGoogle Scholar
  12. C. Emary, T. Brandes, Phys. Rev. E 67, 066203 (2003) MathSciNetCrossRefADSGoogle Scholar
  13. C. Emary, T. Brandes, Phys. Rev. A 69, 053804 (2004) MathSciNetCrossRefADSGoogle Scholar
  14. K. Rzążewski, K. Wóldkiewicz, W. Żakowicz, Phys. Rev. Lett. 35, 432 (1975) CrossRefADSGoogle Scholar
  15. K. Rzążewski, K. Wóldkiewicz, Phys. Rev. A 13, 1967 (1976) CrossRefADSGoogle Scholar
  16. R. Gilmore, C.M. Bowden, Phys. Rev. A 13, 1989 (1976) CrossRefGoogle Scholar
  17. R. Gilmore, C.M. Bowden, J. Math. Phys. 17, 1617 (1976) MathSciNetCrossRefADSGoogle Scholar
  18. R. Gilmore, Phys. Lett. A 55, 549 (1976) CrossRefGoogle Scholar
  19. M. Orszag, J. Phys. A 10, L21 (1977) Google Scholar
  20. M. Orszag, J. Phys. A 10, L25 (1977) Google Scholar
  21. M. Orszag, J. Phys. A 10, 1995 (1977) CrossRefADSGoogle Scholar
  22. The displacement that a+ \(\rightarrow c^{+}-N\sqrt{\alpha}\) and \(b^{+}\rightarrow d^{+}+N\sqrt{\beta }\) also leads to the same results Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsShaoxingP.R. China
  2. 2.Institute of Theoretical Physics, Shanxi UniversityTaiyuanP.R. China
  3. 3.Department of mathematicsShaoxingP.R. China

Personalised recommendations