Morphological differences between Bi, Ag and Sb nano-particles and how they affect the percolation of current through nano-particle networks

  • A. D.F. DunbarEmail author
  • J. G. Partridge
  • M. Schulze
  • S. A. Brown
Clusters and Nanostructures


Nano-particles of Bi, Ag and Sb have been produced in an inert gas aggregation source and deposited between lithographically defined electrical contacts on SiN. The morphology of these films have been examined by atomic force microscopy and scanning electron microscopy. The Bi nano-particles stick well to the SiN substrate and take on a flattened dome shape. The Ag nano-particles also stick well to the SiN surface; however they retain a more spherical shape. Whereas, many of the Sb nano-particles bounce off the SiN surface with only a small fraction of the Sb nano-particles aggregating at defects resulting in a non-random distribution of the clusters. These nano-scale differences in the film morphology influence the viability of applying percolation theory to in situ macroscopic measurements of the film conductivity, during the deposition process. For Bi and Ag nano-particles the increase in conductivity follows a power law. The power law exponent, t, was found to be 1.27 ±0.13 and 1.40 ±0.14, for Bi and Ag respectively, in agreement with theoretical predictions of t ≈1.3 for 2D random continuum percolation networks. Sb cluster networks do not follow this model and due to the majority of the Sb clusters bouncing off the surface. Differences in the current onset times and final conductance values of the films are also discussed.


73.63.-b Electronic transport in nanoscale materials and structures 36.40.-c Atomic and molecular clusters 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions 81.07.-b Nanoscale materials and structures: fabrication and characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Meiwes-Broer, in Metal Clusters at Surfaces (Springer, Berlin, 2000) Google Scholar
  2. P. Milani, S. Ianotta, in Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999) Google Scholar
  3. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Science 293, 2227 (2001) CrossRefADSGoogle Scholar
  4. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998) CrossRefADSGoogle Scholar
  5. D. Stauffer, in Introduction to Percolation Theory (Taylor and Francis, London, 1985) Google Scholar
  6. H.E. Stanley, Rev. Mod. Phys. 71, S358 (1999) Google Scholar
  7. J. Schmelzer Jr, S.A. Brown, A. Wurl, M. Hyslop, Phys. Rev. Lett. 88, 226802-1 (2002) CrossRefGoogle Scholar
  8. B.J. Last, D.J. Thouless, Phys. Rev. Lett. 27, 1719 (1971) CrossRefADSGoogle Scholar
  9. J. Quintanilla, S. Torquato, R.M. Ziff, J. Phys. A: Math. Gen. 33, L399 (2000) Google Scholar
  10. S. Feng, B.I. Halperin, P.N. Sen, Phys. Rev. B 35, 197 (1987) CrossRefADSGoogle Scholar
  11. B.I. Halperin, S. Feng, P.N. Sen, Phys. Rev. Lett. 54, 2391 (1985) CrossRefADSGoogle Scholar
  12. I. Balberg, Phys. Rev. B 57, 13351 (1998) CrossRefADSGoogle Scholar
  13. A. Okazaki, K. Maruyama, K. Okumura, Y. Hasegawa, S. Miyazima, Phys. Rev. E 54, 3389 (1996) CrossRefADSGoogle Scholar
  14. A. Okazaki, K. Horibe, K. Maruyama, S. Miyazima, Phys. Rev. E 61, 6215 (2000) CrossRefADSGoogle Scholar
  15. M.A. Dubson, J.C. Garland, Phys. Rev. B 32, 7621 (1985) CrossRefADSGoogle Scholar
  16. S. Yamamuro, K. Sumiyama, T. Hihara, K. Suzuki, J. Phys. Soc. Jap. 68, 28 (1999) CrossRefGoogle Scholar
  17. P. Melinon, P. Jensen, Jian Xiong Hu, A. Hoareau, B. Cabaud, M. Treilleux, D. Guillot, Phys. Rev. B 44, 12562 (1991) CrossRefADSGoogle Scholar
  18. S. Heun, J. Bange, R. Schad, M. Henzler, J. Phys.: Condens. Matter, 5 2913 (1993) Google Scholar
  19. S. Takeda, X. Tong, S. Ino, S. Hasegawa, Surf. Sci. 415, 264 (1998) CrossRefGoogle Scholar
  20. A. Wurl, M. Hyslop, S.A. Brown, B.D. Hall, R. Monot, Eur. Phys. J. D 16, 205 (2001) CrossRefADSGoogle Scholar
  21. M. Schulze, S. Gourley, S.A. Brown, A. Dunbar, J. Partridge, R.J. Blaikie, Eur. Phys. J. D 24, 291 (2003) CrossRefADSGoogle Scholar
  22. C. Binns, Surf. Sci. Rep. 44, 1 (2001) CrossRefGoogle Scholar
  23. L.N. Smith, C.J. Lobb, Phys. Rev. B 20, 3653 (1979) CrossRefADSGoogle Scholar
  24. W. Harbich, B. von Issendorf, private communications Google Scholar
  25. J.G. Partridge, S. Scott, A.D.F. Dunbar, M. Schulze, S.A. Brown, A. Wurl, R.J. Blaikie, IEEE Trans. Nanotech. 3, 61 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • A. D.F. Dunbar
    • 1
    Email author
  • J. G. Partridge
    • 1
  • M. Schulze
    • 1
  • S. A. Brown
    • 1
  1. 1.Department of Physics and AstronomyUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations