Advertisement

Detection by two-photon ionization and magnetic trapping of cold Rb2 triplet state molecules

  • J. Lozeille
  • A. Fioretti
  • C. Gabbanini
  • Y. Huang
  • H. K. Pechkis
  • D. Wang
  • P. L. Gould
  • E. E. Eyler
  • W. C. Stwalley
  • M. Aymar
  • O. DulieuEmail author
Laser Cooling and Quantum Gas

Abstract.

We present detailed experimental spectra and accurate theoretical interpretation of resonance-enhanced two-photon ionization of ultracold rubidium molecules in the 14000–17000 cm-1 transition energy range. The dimers are formed in a magneto-optical trap by photoassociation followed by radiative decay into the a 3Σu+ lowest triplet state. The theoretical treatment of the process, which reproduces the main features of the spectra, takes into account the photoassociation and decay steps as well as the resonant ionization through the manifold of intermediate gerade states correlated to the 5S + 4D limit. In particular, the energy of the v=1 level of the \((2)\ ^{3}\Sigma_{g}^{+}\) potential well has been determined for the first time. In addition, a tight constraint has been put on the position of the a 3Σu+ repulsive wall. Finally, magnetic trapping of rubidium molecules in the a 3Σu+ state is demonstrated.

PACS.

32.80.Pj Optical cooling of atoms; trapping 33.80.Ps Optical cooling of molecules; trapping 33.20.-t Molecular spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

d05409OM1.pdf (124 kb)
PDF File (127 KB)
d05409OM2.pdf (70 kb)
PDF File (71 KB)

References

  1. J.D. Weinstein, R. de Carvalho, T. Guillet, B. Friedrich, J.M. Doyle, Nature 395, 148 (1998) CrossRefADSGoogle Scholar
  2. H.L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett. 83, 1558 (1999) CrossRefADSGoogle Scholar
  3. A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Phys. Rev. Lett. 80, 4402 (1998) CrossRefADSGoogle Scholar
  4. A.N. Nikolov, E.E. Eyler, X.T. Wang, H. Wang, W.C. Stwalley, P.L. Gould, Phys. Rev. Lett. 82, 703 (1999) MathSciNetCrossRefADSGoogle Scholar
  5. C. Gabbanini, A. Fioretti, A. Lucchesini, S. Gozzini, M. Mazzoni, Phys. Rev. Lett. 84, 2814 (2000) CrossRefADSGoogle Scholar
  6. F.K. Fatemi, K.M. Jones, P.D. Lett, E. Tiesinga, Phys. Rev. A 66, 053401 (2002) CrossRefADSGoogle Scholar
  7. A.J. Kerman, J.M. Sage, S. Sainis, T. Bergeman, D. DeMille, Phys. Rev. Lett. 92, 033004 (2004) CrossRefADSGoogle Scholar
  8. D. Wang, J. Qi, M.F. Stone, O. Nikolayeva, H. Wang, B. Hattaway, S.D. Gensemer, P.L. Gould, E.E. Eyler, W.C. Stwalley, Phys. Rev. Lett. 93, 243005 (2004) CrossRefADSGoogle Scholar
  9. T. Weber, J. Herbig, M. Mark, H.C. Nagerl, R. Grimm, Science 299, 232 (2003) CrossRefADSGoogle Scholar
  10. C.A. Regal, C. Ticknor, J.L. Bohn, D.S. Jin, Nature 424, 47 (2003) CrossRefADSGoogle Scholar
  11. G. Pichler, S. Milosevic, D. Veza, R. Beuc, J. Phys. B 16, 4619 (1983) CrossRefADSGoogle Scholar
  12. F.R. Bruhl, R.A. Miron, W.E. Ernst, J. Chem. Phys. 115, 10275 (2001) CrossRefADSGoogle Scholar
  13. C.M. Dion, O. Dulieu, D. Comparat, W. de Souza Melo, N. Vanhaecke, P. Pillet, R. Beuc, S. Milosevic, G. Pichler, Eur. Phys. J. D 18, 365 (2002) ADSGoogle Scholar
  14. C.M. Dion, C. Drag, O. Dulieu, B. Laburthe Tolra, F. Masnou-Seeuws, P. Pillet, Phys. Rev. Lett. 86, 2253 (2001) CrossRefADSGoogle Scholar
  15. Y. Huang, J. Qi, H.K. Pechkis, D. Wang, E.E. Eyler, P.L. Gould, W.C. Stwalley, J. Phys. B (to be published) Google Scholar
  16. A. Fioretti, C. Amiot, C.M. Dion, O. Dulieu, M. Mazzoni, G. Smirne, C. Gabbanini, Eur. Phys. J. D 15, 189 (2001) CrossRefADSGoogle Scholar
  17. M. Aymar, O. Dulieu, J. Chem. Phys. 122, 204302 (2005) CrossRefADSGoogle Scholar
  18. A. Derevianko, W.R. Johnson, M.S. Safronova, J.F. Babb, Phys. Rev. Lett. 82, 3589 (1999) CrossRefADSGoogle Scholar
  19. S.G. Porsev, A. Derevianko, J. Chem. Phys. 119, 844 (2003) CrossRefADSGoogle Scholar
  20. A.R. Allouche, M. Aubert-Frécon, private communication Google Scholar
  21. J.L. Roberts, N.R. Claussen, J.P. Burke, C.H. Greene, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 81, 5109 (1998) CrossRefADSGoogle Scholar
  22. N. Vanhaecke, W. de Souza Melo, B.L. Tolra, D. Comparat, P. Pillet, Phys. Rev. Lett. 89, 063001 (2002) CrossRefADSGoogle Scholar
  23. D. Wang, J. Qi, M.F. Stone, O. Nikolayeva, B. Hattaway, S.D. Gensemer, H. Wang, W.T. Zemke, P.L. Gould, E.E. Eyler, W.C. Stwalley, Eur. Phys. J. D 31, 165 (2004) CrossRefADSGoogle Scholar
  24. A. Fioretti, J. Lozeille, C.A. Massa, M.C. Gabbanini, Opt. Commun. 243, 203 (2004) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • J. Lozeille
    • 1
  • A. Fioretti
    • 1
  • C. Gabbanini
    • 1
  • Y. Huang
    • 2
  • H. K. Pechkis
    • 2
  • D. Wang
    • 2
  • P. L. Gould
    • 2
  • E. E. Eyler
    • 2
  • W. C. Stwalley
    • 2
  • M. Aymar
    • 3
  • O. Dulieu
    • 3
    Email author
  1. 1.Istituto per i Processi Chimico-Fisici del C.N.R., Via G.Moruzzi 1PisaItaly
  2. 2.Physics DepartmentUniversity of ConnecticutStorrsUSA
  3. 3.Laboratoire Aimé Cotton, CNRSOrsay CedexFrance

Personalised recommendations