A nonadiabatic semi-classical method for dynamics of atoms in optical lattices

  • S. Jonsell
  • C. M. Dion
  • M. Nylén
  • S. J.H. Petra
  • P. Sjölund
  • A. Kastberg
Laser Cooling and Quantum Gas

Abstract.

We develop a semi-classical method to simulate the motion of atoms in a dissipative optical lattice. Our method treats the internal states of the atom quantum mechanically, including all nonadiabatic couplings, while position and momentum are treated as classical variables. We test our method in the one-dimensional case. Excellent agreement with fully quantum mechanical simulations is found. Our results are much more accurate than those of earlier semi-classical methods based on the adiabatic approximation.

PACS.

32.80.Pj Optical cooling of atoms; trapping 03.65.Sq Semiclassical theories and applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Lett, R. Watts, C. Westbrook, W.D. Phillips, P. Gould, H. Metcalf, Phys. Rev. Lett. 61, 169 (1988) CrossRefADSGoogle Scholar
  2. P. Jessen, I. Deutsch, Adv. At. Mol. Phys. 37, 95 (1996) Google Scholar
  3. G. Grynberg, C. Robilliard, Phys. Rep. 355, 335 (2001) CrossRefADSGoogle Scholar
  4. I. Bloch, Nature Phys. 1, 23 (2005) CrossRefADSGoogle Scholar
  5. C. Monroe, Nature 416, 238 (2002) CrossRefADSGoogle Scholar
  6. J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) ADSCrossRefGoogle Scholar
  7. P.J. Ungar, D.S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989) ADSGoogle Scholar
  8. K. Mølmer, Phys. Rev. A 44, 5820 (1991) CrossRefADSGoogle Scholar
  9. J. Javanainen, Phys. Rev. A 46, 5819 (1992) CrossRefADSGoogle Scholar
  10. K.I. Petsas, G. Grynberg, J.-Y. Courtois, Eur. Phys. J. D 6, 29 (1999) CrossRefADSGoogle Scholar
  11. Y. Castin, J. Dalibard, Europhys. Lett. 14, 761 (1991) ADSGoogle Scholar
  12. J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992) CrossRefADSGoogle Scholar
  13. J. Jersblad, H. Ellman, L. Sanchez-Palencia, A. Kastberg, Eur. Phys. J. D 22, 333 (2003) ADSGoogle Scholar
  14. C. Cohen-Tannoudji, in Fundamental systems in Quantum Optics, Les Houches summer school of theoretical physics 1990, session LIII, edited by J. Dalibard, J.M. Raimond, J. Zinn-Justin (Elsevier Science Publishers, Amsterdam, 1992), p. 1 Google Scholar
  15. E.P. Wigner, Phys. Rev. 40, 749 (1932) MATHCrossRefADSGoogle Scholar
  16. J. Dalibard, C. Cohen-Tannoudji, J. Phys. B: At. Mol. Phys. 18, 1661 (1985) MathSciNetCrossRefADSGoogle Scholar
  17. H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1996) Google Scholar
  18. R.L. Honeycutt, Phys. Rev. A 45, 600 (1992) CrossRefADSGoogle Scholar
  19. A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1995) Google Scholar
  20. D.A. Steck, Cesium D Line Data, http://steck.us/alkalidata Google Scholar
  21. C.M. Dion, P. Sjölund, S.J.H. Petra, S. Jonsell, A. Kastberg, Europhys. Lett. 71, 369 (2005) CrossRefADSGoogle Scholar
  22. H. Ellmann, J. Jersblad, A. Kastberg, Phys. Rev. Lett. 90, 053001 (2003); H. Ellmann, J. Jersblad, A. Kastberg, Eur. Phys. J. D 22, 355 (2003) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • S. Jonsell
    • 1
  • C. M. Dion
    • 1
  • M. Nylén
    • 1
  • S. J.H. Petra
    • 1
  • P. Sjölund
    • 1
  • A. Kastberg
    • 1
  1. 1.Department of PhysicsUmeå UniversityUmeåSweden

Personalised recommendations