Ultra-long-range states in excited 3He2

  • A. S. DickinsonEmail author
Highlight Paper


Long-range potentials have been calculated for 3He2 molecules dissociating to 3He 2 3S + 3He 2 3P, including the retarded dipole and the van der Waals interactions. Ultra-long-range wells with depths of up to about 2.4 GHz have been found in many of the adiabatic body-fixed potentials and rovibrational levels have been calculated for some of these wells, which have been found to support up to 4 rotationless vibrational levels.


Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Léonard, M. Walhout, A.P. Mosk, T. Müller, M. Leduc, C. Cohen-Tannoudji, Phys. Rev. Lett. 91, 073203 (2003) CrossRefADSGoogle Scholar
  2. J. Léonard, A.P. Mosk, M. Walhout, P. van der Straten, M. Leduc, C. Cohen-Tannoudji, Phys. Rev. A 69, 032702 (2004) CrossRefADSGoogle Scholar
  3. V. Venturi, P.J. Leo, E. Tiesinga, C.J. Williams, I.B. Whittingham, Phys. Rev. A 68, 022706 (2003) CrossRefADSGoogle Scholar
  4. J. Kim, U.D. Rapol, S. Moal, J. Léonard, M. Walhout, M. Leduc, Eur. Phys. J. D 31, 227 (2004) CrossRefADSGoogle Scholar
  5. R.J.W. Stas, J.M. McNamara, W. Hogervorst, W. Vassen, Phys. Rev. Lett. 93, 053001 (2004) CrossRefADSGoogle Scholar
  6. H.A. Bethe, E.E. Salpeter, Quantum mechanics of one- and two-electron systems, Encyclopedia of Physics, edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. XXXV, p. 88 Google Scholar
  7. S.D. Rosner, F.M. Pipkin, Phys. Rev. A 1, 571 (1970); Erratum, Phys. Rev. A 3, 521 (1971) CrossRefADSGoogle Scholar
  8. C.J. Williams, E. Tiesinga, P.S. Julienne, Phys. Rev. A 53, R1939 (1996) Google Scholar
  9. M.J. Stephen, J. Chem. Phys. 40, 669 (1964) CrossRefGoogle Scholar
  10. W.J. Meath, J. Chem. Phys. 48, 227 (1968) CrossRefGoogle Scholar
  11. J.-M. Launay, J. Phys. B 10, 3665 (1977) CrossRefADSGoogle Scholar
  12. B. Gao, Phys. Rev. A 54, 2022 (1996) CrossRefADSGoogle Scholar
  13. R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, USA, 1988) Google Scholar
  14. L.D. Landau, E.M. Lifschitz, Quantum Mechanics (Pergamon Press, London, 1959), p. 293 Google Scholar
  15. E.A. Hinds, J.D. Prestage, F.M.J. Pichanick, Phys. Rev. A 32, 2615 (1985) CrossRefADSGoogle Scholar
  16. P.J. Nacher, M. Leduc, J. Phys. (France) 46, 2057 (1985) Google Scholar
  17. P. Zhao, J.R. Lawall, F.M. Pipkin, Phys. Rev. Lett. 66, 592 (1991) CrossRefADSGoogle Scholar
  18. R.J. Le Roy, Technical Report CP-642R3, University of Waterloo, 2001 Google Scholar
  19. A.S. Dickinson, F.X. Gadéa, T. Leininger, Europhys. Lett. 70, 320 (2005) CrossRefGoogle Scholar
  20. J. Koelemeij, Ph.D. thesis, Free University of Amsterdam, 2004 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Natural Sciences (Physics), University of NewcastleRU Newcastle upon TyneUK

Personalised recommendations