Exact non-Born-Oppenheimer wave function for the Hooke-Calogero model of the H2 molecule

A useful exact molecular model for electron correlation studies
  • X. LopezEmail author
  • J. M. Ugalde
  • E. V. Ludeña
Molecular Physics and Chemical Physics


The Hooke-Calogero model of the H2 molecule, a four body system consisting of two protons and two electrons with harmonic electron-nuclear, Coulombic electron-electron and inverse quadratic nuclear-nuclear interactions, has been analyzed in–depth. A fully analytical closed–form non-Born-Oppenheimer solution has been found and based on it the properties of both electron–pair and nuclear–pair densities have been studied. Nuclei have been found to be strongly correlated in a way that resembles a sort of Wigner crystallization, for moderate electron–nucleus confinement strengths. Additionally, we have explicitly evaluated the Coulomb holes for the electrons. Analysis of these holes reveals that the similarity between the electron correlation effects of the model as compared to the real Coulombic systems is remarkable.


Spectroscopy Neural Network Crystallization State Physics Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. N.F. Johnson, J. Phys.: Condens. Matter 7, 965 (1995) CrossRefADSGoogle Scholar
  2. S.K. Bose, N. Gupta, Nuovo Cim. B 113, 229 (1998) Google Scholar
  3. T. Tanaka, Ann. Phys. 309, 239 (2004) CrossRefADSzbMATHGoogle Scholar
  4. M. Moshinsky, Am. J. Phys. 36, 52 (1968) CrossRefGoogle Scholar
  5. N.R. Kestner, O. Sinanoglu, Phys. Rev. 128, 2687 (1962) CrossRefADSGoogle Scholar
  6. E. Santos, A. R. Soc. Esp. Fis. Quim. 64, 177 (1968) Google Scholar
  7. R.J. White, W. Byers Brown, J. Chem. Phys. 53, 3869 (1970) CrossRefMathSciNetGoogle Scholar
  8. J.M. Benson, W. Byers Brown, J. Chem. Phys. 53, 3880 (1970) CrossRefMathSciNetGoogle Scholar
  9. S. Kais, D.R. Herschbach, R.D. Levine, J. Chem. Phys. 91, 7791 (1989) CrossRefADSGoogle Scholar
  10. S. Kais, D.R. Herschbach, N.C. Handy, C.W. Murray, G.J. Laming, J. Chem. Phys. 99, 417 (1993) CrossRefADSGoogle Scholar
  11. M. Taut, Phys. Rev. A 48, 3561 (1993) CrossRefADSGoogle Scholar
  12. J. Karwowski, L. Cyrnek, Ann. Phys. (Leipzig) 13, 181 (2004) CrossRefADSzbMATHGoogle Scholar
  13. J. Cioslowski, K. Pernal, J. Chem. Phys. 113, 8434 (2000) CrossRefADSGoogle Scholar
  14. M. Taut, K. Pernal, J. Cioslowski, V. Staemmler, J. Chem. Phys. 118, 4861 (2003) CrossRefADSGoogle Scholar
  15. Z. Yalcin, M. Simsek, Inter. J. Quant. Chem. 88, 735 (2002) CrossRefGoogle Scholar
  16. F. Calogero, J. Math. Phys. 10, 2191 (1969) CrossRefMathSciNetGoogle Scholar
  17. F. Calogero, J. Math. Phys. 10, 2197 (1969) CrossRefMathSciNetGoogle Scholar
  18. F. Calogero, J. Math. Phys. 12, 419 (1971) CrossRefMathSciNetGoogle Scholar
  19. F. Calogero, C. Marchioro, Phys. Rev. Lett. 27, 86 (1971) CrossRefADSGoogle Scholar
  20. B. Sutherland, J. Math. Phys. 12, 246 (1971) CrossRefGoogle Scholar
  21. R.A. Römer, P. Ziesche, J. Phys. A: Math. Gen. 34, 1485 (2001) CrossRefADSzbMATHGoogle Scholar
  22. A. Khare, J. Phys. A: Math. Gen. 29, L45 (1996) Google Scholar
  23. V.V. Pupyshev, Phys. Atom. Nucl. 66, 61 (2003) CrossRefGoogle Scholar
  24. G. Lamouche, G. Fishman, J. Phys.: Condens. Matter 10, 7857 (1998) CrossRefADSGoogle Scholar
  25. N.F. Johnson, L. Quiroga, Phys. Rev. Lett. 74, 4277 (1995) CrossRefADSGoogle Scholar
  26. A. González, L. Quiroga, B.A. Rodríguez, Few Body Sys. 21, 47 (1996) CrossRefADSGoogle Scholar
  27. E.V. Ludeña, X. Lopez, J.M. Ugalde, J. Chem. Phys. 123, 024102 (2005) CrossRefGoogle Scholar
  28. P.M. Laufer, J.B. Krieger, Phys. Rev. A 33, 1480 (1986) CrossRefADSGoogle Scholar
  29. P. Ziesche, V.H. Smith Jr, H. Hô, S.P. Rudin, P. Gersdorf, M. Taut, J. Chem. Phys. 110, 6135 (1999) CrossRefADSGoogle Scholar
  30. R. Pino, V. Mujica, J. Phys. B: At. Mol. Opt. Phys. 31, 4537 (1998) CrossRefADSGoogle Scholar
  31. U. Fano, Phys. Rev. A 2, 353 (1970) CrossRefADSMathSciNetGoogle Scholar
  32. I. Martín, G. Simons, J. Chem. Phys. 62, 4799 (1975) CrossRefADSGoogle Scholar
  33. C. Greene, U. Fano, G. Strinat, Phys. Rev. A 19, 1485 (1979) CrossRefADSGoogle Scholar
  34. M.J. Seaton, Rep. Prog. Phys. 46, 167 (1983) CrossRefADSGoogle Scholar
  35. C. Greene, A.P.R. Rau, U. Fano, Phys. Rev. A 26, 2441 (1982); C. Greene, A.P.R. Rau, U. Fano, Phys. Rev. A 30, 3321 (1984) CrossRefADSGoogle Scholar
  36. A. Galindo, P. Pascual, Quantum Mechanics I (Springer-Verlag, Berlin, 1990), p. 239 Google Scholar
  37. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, edited by M. Abramowitz, I.A. Stegun, 9th printing (Dover Publications, New York, 1972) Google Scholar
  38. E.P. Wigner, Phys. Rev. B 46, 1002 (1934) CrossRefADSzbMATHGoogle Scholar
  39. P. Fulde, Electron Correlations in Molecules and Solids, 3rd. edn. (Springer–Verlag, Berlin, 2002) Google Scholar
  40. J.M. Mercero, E. Valderrama, J.M. Ugalde, Electron correlation: Quantum chemisty's holy grail, edited by N. Russo, D.R. Salahub, M. Witko, NATO-ASI Series in Metal Ligand Interactions in Molecular–, Nano–, and Macro–systems in Complex Environments (Kluwer Academic Publishers, The Netherlands, 2003), pp. 205–239 Google Scholar
  41. C.A. Coulson, A.H. Neilson, Proc. Phys. Soc. Lond. 78, 831 (1961) CrossRefzbMATHMathSciNetGoogle Scholar
  42. D.P. O'Neil, P.M.W. Gill, Phys. Rev. A 68, 022505 (2003) CrossRefADSGoogle Scholar
  43. E.V. Ludeña, D. Gómez, V. Karasiev, P. Nieto, Int. J. Quant. Chem. 99, 297 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), P.K. 1072, 20080 DonostiaEuskadiSpain
  2. 2.Centro de Química, Instituto Venezolano de Investigaciones CientíficasCaracasVenezuela

Personalised recommendations