Advertisement

Fragmentation and internal steric rearrangement of C60 - in electron transfer dynamics

  • R. F.M. LoboEmail author
  • N. T. Silva
  • B. M.N. Vicente
  • I. M.V. Gouveia
  • F. M.V. Berardo
  • J. H.F. Ribeiro
Dynamics and Stereodynamics of Bimolecular Collisions

Abstract.

The crossed molecular beam technique is used for producing C60 - species through potassium-buckyball collision processes, and studying the collision dynamics in an energy ranging from 10 eV up to 500 eV. At low collision energies only the negative parent ion is formed. As long as the collision energy is increased the fragmentation pattern of the fullerene negative ion could be identified and relative total cross-sections could be measured. Surprisingly, some satellite contributions have been observed in the band structure of C60 - parent ion time-of-flight spectrum, which points to the existence of distinct conformational C60 - isomers, which are likely to be formed during the collision, favoured by the strong polarization of the C60 - in the presence of the K+ projectile ion. Such presumed detection of different spheroidal metastable C60 - conformers was made possible due to an electric effect operating at the nanoscale.

PACS.

34.50.Lf Chemical reactions, energy disposal, and angular distribution, as studied by atomic and molecular beams 61.48.+c Fullerenes and fullerene-related materials 71.20.Tx Fullerenes and related materials; intercalation compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Herschbach, Adv. Chem. Phys. 10, 319 (1966) Google Scholar
  2. A. Baede, J. Los, Physica 52, 422 (1971) CrossRefGoogle Scholar
  3. P.K. Parks, A. Wagner, S. Wexler, J. Chem. Phys. 56, 5502 (1973) CrossRefGoogle Scholar
  4. E.W. Rothe, S.Y. Tang, G.P. Reck, Chem. Phys. Lett. 26, 434 (1974) CrossRefADSGoogle Scholar
  5. R.N. Compton, P.W. Reinhardt, L.D. Cooper, J. Chem. Phys. 68, 4360 (1978) CrossRefADSGoogle Scholar
  6. P.R. Brooks, Science 193, 11 (1976) ADSGoogle Scholar
  7. K. Lacmann, Adv. Chem. Phys. 42, 513 (1980) Google Scholar
  8. A.W. Klein, J. Los, E.A. Gislason, Phys. Rep. 90, 1 (1982) CrossRefADSGoogle Scholar
  9. R.F.M. Lobo, A.M.C. Moutinho, K. Lacmann, J. Los, J. Chem. Phys. 95, 4360 (1991) CrossRefGoogle Scholar
  10. R.F.M. Lobo, A.M.C. Moutinho, J. Los, Chem. Phys. 179, 179 (1994) CrossRefGoogle Scholar
  11. R.F.M. Lobo, A.M.C. Moutinho, M.J. Calhorda, Chem. Phys. 234, 265 (1998) CrossRefGoogle Scholar
  12. R.F.M. Lobo, P.L. Vieira, S.S.M.C. Godinho, M.J. Calhorda, J. Chem. Phys 116, 9712 (2002) CrossRefADSGoogle Scholar
  13. B. Jia, J. Laib, R.F.M. Lobo, P.R. Brooks, J. Am. Chem. Soc. 124, 13896 (2002) CrossRefGoogle Scholar
  14. G. Scoles, Atomic and Molecular Beam Methods (Oxford University Press, New York, 1988/1992), Vols. 1/2 Google Scholar
  15. R.F.M. Lobo, N.T. Silva, Rev. Scient. Instrum. 72, 3505 (2001) CrossRefADSGoogle Scholar
  16. O. Elhamidi, J. Pommier, R. Abouaf, J. Phys. B: At. Mol. Opt. Phys. 30, 4633 (1997) CrossRefADSGoogle Scholar
  17. L.G. Christophorou, D.L. McCorkle, A.A. Christodoulides, Electron-Molecule Interactions and Their Applications, edited by L.G. Christophorou (Academic, New York, 1984), Vol. l Google Scholar
  18. H.W. Kroto, J.R. Heath, S.C. O'Brian, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985) CrossRefADSGoogle Scholar
  19. W. Krätchmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990) CrossRefADSGoogle Scholar
  20. R.E. Haufler, Y. Chai, L.P.F. Chibante, S. Maruyama, R.E. Smalley, Clusters and Cluster Assembled Materials, edited by R.S. Averback, J. Bernholc, D.L Nelson, MRS Proc. 206, 627 (1991) Google Scholar
  21. M. Randic, Chem. Phys. Lett. 38, 68 (1976) CrossRefADSMathSciNetGoogle Scholar
  22. J. Chelikowsky, Phys. Rev. Lett. 67, 2970 (1991) CrossRefADSGoogle Scholar
  23. J. Yi, J. Bernholc, J. Chem. Phys. 96, 8634 (1992) CrossRefADSGoogle Scholar
  24. K.C. Pandey, Phys. Rev. Lett. 57, 2287 (1986) CrossRefADSGoogle Scholar
  25. S.J. Austin, P.W. Fowler, P. Hansen, D.E. Manolopoulos, M. Zheng, Chem. Phys. Lett. 228, 478 (1994) CrossRefADSGoogle Scholar
  26. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1990) Google Scholar
  27. T. Ziegler, Chem. Rev. 91, 651 (1991) CrossRefGoogle Scholar
  28. P. Pyykko, Chem. Rev. 97, 597 (1997) CrossRefGoogle Scholar
  29. M.J. Frisch et al., GAUSSIAN 98, Revision A8, Gaussian, Inc., Pittsburgh, PA, 1998 Google Scholar
  30. A.D. Becke, J. Chem. Phys. 98, 5648 (1993) CrossRefADSGoogle Scholar
  31. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) CrossRefADSGoogle Scholar
  32. C. Moller, M.S. Plesset, Phys. Rev. 46, 618 (1934) CrossRefADSzbMATHGoogle Scholar
  33. M.J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 275 (1990) CrossRefADSGoogle Scholar
  34. J. Cioslowski, B.B. Stefanov, Mol. Phys. 84, 707 (1995) Google Scholar
  35. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990) Google Scholar
  36. J. Huang, H.S. Carman, R.N. Compton, J. Phys. Chem. 99, 1719 (1995) CrossRefGoogle Scholar
  37. L.S. Wang, C. Jin, R.E. Smalley, Chem. Phys. Lett. 182, 5 (1991) CrossRefADSGoogle Scholar
  38. E. Foltin, T.D. Märk, J. Chem. Phys. 98, 9624 (1993) CrossRefADSGoogle Scholar
  39. T.D. Märk, I. Illenberger, J. Chem. Phys. 102, 2516 (1995) CrossRefGoogle Scholar
  40. H. Lorents, M. Mathur, Phys. Rev. A 52, 3847 (1995) CrossRefADSGoogle Scholar
  41. H. McHale, J. Mass Spect. 30, 33 (1995) CrossRefGoogle Scholar
  42. H. Ehlich, E. Campbell, J. Chem. Phys. 104, 1900 (1996) CrossRefADSGoogle Scholar
  43. F. Will, A. Vandenbosch, UW NPL. Annual Rep 67, 199 (2000) Google Scholar
  44. R.F.M. Lobo, N.T. Silva, M.J. Calhorda, M.S. Costa, P.J. Costa, Proceedings XX International Symposium on Molecular Beams, Lisbon (UNL, 2003), pp. 1, 137 Google Scholar
  45. J.A. Aten, J. Los, J. Phys. E. Sci. Inst. 8, 408 (1973) CrossRefADSGoogle Scholar
  46. R.F.M. Lobo, N.T. Silva, M.S. Costa, Proceedings XXI International Symposium on Molecular Beams, Hersonisos (FORTH, 2005), p. 79 Google Scholar
  47. B.K. Annis, S. Datz, J. Chem. Phys. 69, 2553 (1978) CrossRefADSGoogle Scholar
  48. R.N. Compton, P.W. Reinhardt, Chem. Phys. Lett. 91, 268 (1982) CrossRefADSGoogle Scholar
  49. W.E. Billups, M.A. Ciufolini, Buckminsterfullerenes (VCH Publishers, New York, 1993) Google Scholar
  50. A. Bekkerman, B. Tsipinyuk, S. Verkhoturov, E. Kolodney, J. Chem. Phys. 109, 8652 (1998) CrossRefADSGoogle Scholar
  51. B. Friedman, Phys. Rev. B. 48, 2743 (1992) CrossRefADSGoogle Scholar
  52. R.J. Gaylord, S.N. Kamin, P.R. Wellin, Introduction to Programming with Mathematica (Springer-Verlag, New York, 1993) Google Scholar
  53. M.L. Abell, J.P. Braselton, Differential Equations with Mathematica, 2nd edn. (Academic Press, Boston, 1996) Google Scholar
  54. B. Brunetti, P. Candori, R. Ferramosche, S. Falcinelli, F. Vecchiocattivi, A. Sassara, M. Chergui, Chem. Phys. Lett. 294, 584 (1998) CrossRefGoogle Scholar
  55. C. Brink, L.H. Andersen, P. Hvelplund, D. Mathur, J.D. Voldstad, Chem. Phys. Lett. 233, 52 (1995) CrossRefADSGoogle Scholar
  56. H. Yasumatsu, T. Kondow, H. Kitagawa, K. Tabayashi, K. Shobatake, J. Chem. Phys. 104, 899 (1996) CrossRefADSGoogle Scholar
  57. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1960) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • R. F.M. Lobo
    • 1
    Email author
  • N. T. Silva
    • 1
  • B. M.N. Vicente
    • 1
  • I. M.V. Gouveia
    • 1
  • F. M.V. Berardo
    • 1
  • J. H.F. Ribeiro
    • 1
  1. 1.Grupo de Nanotecnologia e Ciência à Nano-Escala (GNCN), Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparicaPortugal

Personalised recommendations