Advertisement

Probing spin-orbit quenching in Cl (2P) + H2 via crossed molecular beam scattering

  • B. F. Parsons
  • K. E. Strecker
  • D. W. ChandlerEmail author
Dynamics and Stereodynamics of Bimolecular Collisions

Abstract.

In our previous work we investigated electronically non-adiabatic effects in \(\rm Cl~(^{2}P_{3/2,1/2})+D_{2}\) using crossed molecular beam scattering coupled with velocity mapped ion imaging. The prior experiments placed limits on the cross-section for electronically non-adiabatic spin-orbit excitation \(\rm Cl~(^{2}P_{3/2})+D_{2} \to Cl^*~(^{2}P_{1/2})+D_{2}\) and electronically non-adiabatic spin-orbit quenching \(\rm Cl^*~(^{2}P_{1/2})+D_{2}\to Cl~(^{2}P_{3/2})+D_{2}\). In the present work, we investigate electronically non-adiabatic spin-orbit quenching for \(\rm Cl^*~(^{2}P_{1/2})+H_{2}\) which is the required first step for the reaction of Cl* to produce ground state HCl+H products. In these experiments we collide Cl (2P) with H2 at a series of fixed collision energies using a crossed molecular beam machine with velocity mapped ion imaging detection. Through an analysis of our ion images, we determine the fraction of electronically adiabatic scattering in Cl* +H2, which allows us to place limits on the cross-section for electronically non-adiabatic scattering or quenching. We determine the following quenching cross-sections σ quench(2.1 kcal/mol) = 26 ±  21 Å2, σ quench(4.0 kcal/mol) = 21 ±  49 Å2, and σ quench(5.6 kcal/mol) = 14 ±  41 Å2.

PACS.

34.50.Lf Chemical reactions, energy disposal, and angular distribution, as studied by atomic and molecular beams 34.50.Pi State-to-state scattering analyses 34.50.-s Scattering of atoms and molecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Michelsen, W.R. Simpson, J. Phys. Chem. A 105, 1476 (2001); S.M. Senkan, J.M. Robinson, A.K. Gupta, Combust. Flame 49, 305 (1983) CrossRefGoogle Scholar
  2. M.H. Alexander, G. Capecchi, H.J. Werner, Science 296, 715 (2002) CrossRefADSGoogle Scholar
  3. M.H. Alexander, G. Capecchi, H.-J. Werner, Faraday Discuss. 127, 59 (2004) CrossRefGoogle Scholar
  4. N. Balucani, D. Skouteris, L. Cartechini, G. Capozza, E. Segoloni, P. Casavecchia, M.H. Alexander, G. Capecchi, H.-J. Werner, Phys. Rev. Lett. 91, 013201 (2003) CrossRefADSGoogle Scholar
  5. U. Manthe, W. Bian, H.-J. Werner, Chem. Phys. Lett. 313, 647 (1999); U. Manthe, G. Capecchi, H.-J. Werner, Phys. Chem. Chem. Phys. 6, 5026 (2004) CrossRefGoogle Scholar
  6. S.S. Kumaran, K.P. Lim, J.V. Michael, J. Chem. Phys. 101, 9487 (1994); C.A. Taatjes, Chem. Phys. Lett. 306, 33 (1999) CrossRefADSGoogle Scholar
  7. D. Skouteris, D.E. Manolopoulos, W. Bian, H.-J. Werner, L.-H. Lai, K. Liu, Science 286, 1713 (1999) CrossRefGoogle Scholar
  8. S.-H. Lee, L.-H. Lai, K. Liu, H. Chang, J. Chem. Phys. 110, 8229 (1999) CrossRefADSGoogle Scholar
  9. S.-H. Lee, K. Liu, J. Chem. Phys. 111, 6253 (1999) CrossRefADSGoogle Scholar
  10. F. Dong, S.-H. Lee, K. Liu, J. Chem. Phys. 115, 1197 (2001) CrossRefADSGoogle Scholar
  11. F. Rebentrost, J. Lester, J. Chem. Phys. 67, 3367 (1977); R.E. Wyatt, R.B. Walker, J. Chem. Phys. 70, 1501 (1979) CrossRefADSGoogle Scholar
  12. D.M. Neumark, A.M. Wodtke, G.N. Robinson, C.C. Hayden, Y.T. Lee, Phys. Rev. Lett. 53, 226 (1984); D.M. Neumark, A.M. Wodtke, G.N. Robinson, C.C. Hayden, Y.T. Lee, J. Chem. Phys. 82, 3045 (1985); W.B. Chadman, B.W. Blackmon, D.J. Nesbitt, J. Chem. Phys. 107, 8193 (1997); F. Dong, S.-H. Lee, K. Liu, J. Chem. Phys. 113, 3633 (2000); S.A. Nizkorodov, W.W. Harper, W.B. Chapman, B.B. Blackmon, D.J. Nesbitt, J. Chem. Phys. 111, 8404 (1999); D.E. Manolopoulos, J. Chem. Soc. Faraday Trans. 93, 673 (1997) CrossRefADSGoogle Scholar
  13. S.A. Nizkorodov, W.W. Harper, D.J. Nesbitt, Faraday Disscus. Chem. Soc. 113, 107 (1999) Google Scholar
  14. M.H. Alexander, D.E. Manolopoulos, H.-J. Werner, J. Chem. Phys. 113, 11084 (2000) CrossRefADSGoogle Scholar
  15. B.F. Parsons, D.W. Chandler, J. Chem. Phys. 122, 174306 (2005) CrossRefADSGoogle Scholar
  16. D. Proch, T. Trickl, Rev. Sci. Instrum. 60, 713 (1989) CrossRefADSGoogle Scholar
  17. D.W. Chandler, P.L. Houston, J. Chem. Phys. 87, 1445 (1987); D.H. Parker, A.T.J.B. Eppink, J. Chem. Phys. 107, 2357 (1997) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Combustion Research Facility, Sandia National LaboratoryLivermoreUSA

Personalised recommendations