Advertisement

Collision-energy-resolved Penning ionization electron spectroscopy of styrene, 2-vinylpyridine, and 4-vinylpyridine with He*(23S) metastable atoms

  • M. Yamazaki
  • N. Kishimoto
  • K. OhnoEmail author
Dynamics and Stereodynamics of Bimolecular Collisions

Abstract.

Collisional ionization of styrene (phenylethylene), 2-vinylpyridine, and 4-vinylpyridine with metastable He*(23S) atoms were studied by means of collision-energy/electron-energy resolved two-dimensional Penning ionization electron spectroscopy. Collision energy dependence of partial ionization cross-sections, which reflects the anisotropic interactions between a He*(23S) atom and the target molecules, indicates that attractive interaction for the out-of-plane access of a He*(23S) atom to phenyl group is stronger than that for the out-of-plane access to vinyl group. Moreover, it was found for vinylpyridines that the attractive interaction around π electrons became weaker than that for styrene, and that the attractive interaction for the in-plane access to the nitrogen atom is stronger than that for out-of-plane π-directions. However, in 2-vinylpyridine, the hydrogen atom of vinyl group prevents a He*(23S) atom from approaching to the nitrogen atom along in-plane directions, and thus the attractive interactions around the nitrogen atom were shielded by the vinyl group. The experimentally observed anisotropic interactions were qualitatively supported with ab initio model interaction potential calculations between a Li (He*(23S)) atom and the target molecule. Concerning with electronic structures of investigated molecules, the assignment of Penning ionization electron spectrum for 4-vinylpyridine was discussed on the basis of different behavior of collision-energy dependence of partial ionization cross-sections, and the satellite ionization band in Penning ionization electron spectra was also reported for styrene.

PACS.

34.20.Gj Intermolecular and atom-molecule potentials and forces 34.20.Mq Potential energy surfaces for collisions 34.50.Gb Electronic excitation and ionization of molecules; intermediate molecular states (including lifetimes, state mixing, etc.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Rabalais, Principles of Ultraviolet Photoelectron Spectroscopy (Wiley, New York, 1977) Google Scholar
  2. J.W. Rabalais, R.J. Colton, J. Electron Spectrosc. Relat. Phenom. 1, 83 (1972/73) Google Scholar
  3. T. Kobayashi, K. Yokota, S. Nagakura, J. Electron Spectrosc. Relat. Phenom. 2, 449 (1973) Google Scholar
  4. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules (Japan Scientific, Tokyo, 1981) Google Scholar
  5. K. Kesper, N. Münzel, W. Pietzuch, H. Specht, A. Schweig, J. Mol. Struct. (Theochem) 200, 375 (1989) CrossRefGoogle Scholar
  6. A. Modelli, G. Distefano, J. Electron Spectrosc. Relat. Phenom. 23, 323 (1981) CrossRefGoogle Scholar
  7. P. Swiderek, M.-J. Fraser, M. Michaud, L. Sanche, J. Chem. Phys. 100, 70 (1994) CrossRefADSGoogle Scholar
  8. J.W. Ribblett, D.R. Borst, D.W. Pratt, J. Chem. Phys. 111, 8454 (1999) CrossRefADSGoogle Scholar
  9. M. Dierksen, S. Grimme, J. Chem. Phys. 120, 3544 (2004) CrossRefADSGoogle Scholar
  10. J. Wan, H. Nakatsuji, Chem. Phys. 302, 125 (2004) CrossRefGoogle Scholar
  11. V. Barone, N. Bianchi, F. Lelj, G. Abbate, N. Russo, J. Mol. Struct. (Theochem) 108, 35 (1984) CrossRefGoogle Scholar
  12. D.K. Danovich, V.K. Turchaninov, V.G. Zakrzewski, J. Mol. Struct. (Theochem) 209, 77 (1990) CrossRefGoogle Scholar
  13. D. Consalvo, A. van der Avoird, S. Piccirillo, M. Coreno, A. Giardini-Guidoni, A. Mele, M. Snels, J. Chem. Phys. 99, 8398 (1993) CrossRefADSGoogle Scholar
  14. H. Mahmoud, I.N. Germanenko, Y. Ibrahim, M.S. El-Shall, Chem. Phys. Lett. 356, 91 (2002) CrossRefGoogle Scholar
  15. V.J. Čermák, J. Chem. Phys. 44, 3781 (1966) CrossRefGoogle Scholar
  16. A. Niehaus, Adv. Chem. Phys. 45, 399 (1981) Google Scholar
  17. A.J. Yencha, Electron Spectroscopy: Theory, Technique, and Application, edited by C.R. Brundle, A.D. Baker (Academic, New York, 1984), Vol. 5 Google Scholar
  18. P.E. Siska, Rev. Mod. Phys. 65, 337 (1993) CrossRefADSGoogle Scholar
  19. F.M. Penning, Naturwissenschaften 15, 818 (1927) CrossRefGoogle Scholar
  20. H. Hotop, A. Niehaus, Z. Phys. 228, 68 (1969) CrossRefGoogle Scholar
  21. K. Ohno, H. Mutoh, Y. Harada, J. Am. Chem. Soc. 105, 4555 (1983) CrossRefGoogle Scholar
  22. K. Ohno, T. Takami, K. Mitsuke, T. Ishida, J. Chem. Phys. 94, 2675 (1991) CrossRefADSGoogle Scholar
  23. K. Ohno, H. Yamakado, T. Ogawa, T. Yamata, J. Chem. Phys. 105, 7536 (1996) CrossRefADSGoogle Scholar
  24. K. Ohno, Bull. Chem. Soc. Jpn 77, 887 (2004) CrossRefGoogle Scholar
  25. T. Takami, K. Ohno, J. Chem. Phys. 96, 6523 (1992) CrossRefADSGoogle Scholar
  26. K. Ohno, N. Kishimoto, H. Yamakado, J. Phys. Chem. 99, 9687 (1995) CrossRefGoogle Scholar
  27. K. Ohno, K. Okamura, H. Yamakado, S. Hoshino, T. Takami, M. Yamauchi, J. Phys. Chem. 99, 14247 (1995) CrossRefGoogle Scholar
  28. H. Yamakado, K. Okamura, K. Ohshimo, N. Kishimoto, K. Ohno, Chem. Lett. 26, 269 (1997) CrossRefGoogle Scholar
  29. T. Horio, R. Maruyama, N. Kishimoto, K. Ohno, Chem. Phys. Lett. 384, 73 (2004) CrossRefGoogle Scholar
  30. M. Yamazaki, S. Maeda, N. Kishimoto, K. Ohno, J. Chem. Phys. 122, 044303 (2005) CrossRefGoogle Scholar
  31. N. Kishimoto, M. Furuhashi, K. Ohno, J. Electron Spectrosc. Relat. Phenom. 113, 35 (2000) CrossRefGoogle Scholar
  32. K. Imura, N. Kishimoto, K. Ohno, J. Phys. Chem. A 105, 4189 (2001) CrossRefGoogle Scholar
  33. N. Kishimoto, K. Ohno, J. Phys. Chem. A 104, 6940 (2000) CrossRefGoogle Scholar
  34. D.C. Dunlavy, P.E. Siska, J. Phys. Chem. 100, 21 (1996) CrossRefGoogle Scholar
  35. M. Albertí, M. Lucas, B. Brunetti, F. Pirani, M. Stramaccia, M. Rosi, F. Vecchiocattivi, J. Phys. Chem. A 104, 1405 (2000) CrossRefGoogle Scholar
  36. M. Yamato, H. Ohoyama, T. Kasai, J. Phys. Chem. A 105, 2967 (2001) CrossRefGoogle Scholar
  37. E.W. Rothe, R.H. Neynaber, S. Trujillo, J. Chem. Phys. 42, 3310 (1965) CrossRefGoogle Scholar
  38. H. Haberland, Y.T. Lee, P.E. Siska, Adv. Chem. Phys. 45, 487 (1981) Google Scholar
  39. H. Hotop, T.E. Roth, M.-W. Ruf, A.J. Yencha, Theor. Chem. Acc. 100, 36 (1998) Google Scholar
  40. H. Nakamura, J. Phys. Soc. Jpn 26, 1473 (1969) CrossRefGoogle Scholar
  41. W.H. Miller, J. Chem. Phys. 52, 3563 (1970) CrossRefGoogle Scholar
  42. J.S. Cohen, N.F. Lane, J. Chem. Phys. 66, 586 (1977) CrossRefADSGoogle Scholar
  43. T. Ishida, K. Horime, J. Chem. Phys. 105, 5380 (1996) CrossRefADSGoogle Scholar
  44. T. Ishida, J. Chem. Phys. 105, 1392 (1996) CrossRefADSGoogle Scholar
  45. T. Ogawa, K. Ohno, J. Chem. Phys. 110, 3773 (1999) CrossRefADSGoogle Scholar
  46. T. Ogawa, K. Ohno, J. Phys. Chem. A 103, 9925 (1999) CrossRefGoogle Scholar
  47. N. Kishimoto, T. Horio, S. Maeda, K. Ohno, Chem. Phys. Lett. 379, 332 (2003) CrossRefGoogle Scholar
  48. S. Maeda, M. Yamazaki, N. Kishimoto, K. Ohno, J. Chem. Phys. 120, 781 (2004) CrossRefADSGoogle Scholar
  49. N. Kishimoto, J. Aizawa, H. Yamakado, K. Ohno, J. Phys. Chem. A 101, 5038 (1997) CrossRefGoogle Scholar
  50. J.L. Gardner, J.A.R. Samson, J. Electron Spectrosc. Relat. Phenom. 8, 469 (1976) CrossRefADSGoogle Scholar
  51. M.J. Frisch et al., Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004) Google Scholar
  52. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970) ADSGoogle Scholar
  53. K. Kuchitsu, E. Hirota, T. Iijima, W.J. Lafferty, D.A. Ramsay, Landolt-Börnstein, New Series II/21, 407 Google Scholar
  54. J.V. Ortiz, J. Chem. Phys. 104, 7599 (1996) CrossRefADSGoogle Scholar
  55. K. Ohno, S. Matsumoto, Y. Harada, J. Chem. Phys. 81, 4447 (1984) CrossRefADSGoogle Scholar
  56. T. Munakata, K. Kuchitsu, Y. Harada, Chem. Phys. Lett. 64, 409 (1979) CrossRefADSGoogle Scholar
  57. H. Köppel, L.S. Cederbaum, W. Domcke, J. Chem. Phys. 89, 2023 (1988) CrossRefADSGoogle Scholar
  58. M.S. Deleuze, A.B. Trofimov, L.S. Cederbaum, J. Chem. Phys. 115, 5859 (2001) CrossRefADSGoogle Scholar
  59. S. Masuda, M. Aoyama, K. Ohno, Y. Harada, Phys. Rev. Lett. 65, 3257 (1990) CrossRefADSMathSciNetGoogle Scholar
  60. J.P. Doering, J. Chem. Phys. 51, 2866 (1969) CrossRefGoogle Scholar
  61. H.-G. Weikert, L.S. Cederbaum, Chem. Phys. Lett. 237, 1 (1995) CrossRefADSGoogle Scholar
  62. C. Utsunomiya, T. Kobayashi, S. Nagakura, Bull. Chem. Soc. Jpn 51, 3482 (1978) Google Scholar
  63. M.N. Piancastelli, P.R. Keller, J.W. Taylor, F.A. Grimm, T.A. Garlson, J. Am. Chem. Soc. 105, 4235 (1983) CrossRefGoogle Scholar
  64. C.R. Brundle, M.B. Robin, N.A. Kuebler, J. Am. Chem. Soc. 94, 1466 (1972) CrossRefGoogle Scholar
  65. J.V. Ortiz, V.G. Zakrzewski, J. Chem. Phys. 105, 2762 (1996) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of ChemistryGraduate School of Science, Tohoku UniversitySendaiJapan

Personalised recommendations