Structural deformation, melting point and lattice parameter studies of size selected silver clusters

  • I. Shyjumon
  • M. Gopinadhan
  • O. Ivanova
  • M. Quaas
  • H. Wulff
  • C. A. Helm
  • R. Hippler
Clusters and Nanostructures

Abstract.

Silver clusters have been produced by magnetron sputtering in a gas aggregation nanocluster source. Clusters are size selected using a quadrupole mass filter (3–8 nm) or by varying the aggregation tube length (9–20 nm) of the nanocluster source. Mass selected clusters are deposited on a Si(100) substrate at different bias voltages and are characterized by atomic force microscopy. We observe a significant flattening of clusters on the surface due to the increase of impact energy as a result of increasing substrate bias voltage. The behavior of lattice parameters for size selected clusters are investigated by X-ray diffraction. All measured lattice constants exhibit a tensile strain; it is found that the lattice constant slightly increases with increasing cluster size up to a size of 12 nm and then decreases. The melting temperature of deposited clusters is found to be size-dependent and significantly lower than for bulk material, in agreement with theoretical considerations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Gleiter, Nanostruct. Mater. 1, 1 (1992) CrossRefGoogle Scholar
  2. P. Jensen et al., in Nanostructure and nanocrystals, edited by H.S. Nalwa (American Scientific Publishers, 2003) Google Scholar
  3. B.M. Smirnov, I. Shyjumon, R. Hippler, Phys. Scripta (accepted, 2005) Google Scholar
  4. B.M. Smirnov, Physics-Uspekhi. 46, 589 (2003) CrossRefADSGoogle Scholar
  5. P. Jensen, Rev. Mod. Phys. 71, 1695 (1999) CrossRefADSGoogle Scholar
  6. W. Harbich, in Metal Clusters at Surfaces, edited by K.H. Meiwes-Broer (Springer-Verlag, New York, 1997) Google Scholar
  7. H. Hsieh, R.S. Averback, H. Sellers, C.P. Flynn, Phys. Rev B 45, 4417 (1992) CrossRefADSGoogle Scholar
  8. J. Matsuo, E. Minami, M. Saito, N. Toyoda, H. Katsumata, I. Yamada, Eur. Phys. J. D 9, 635 (1999) CrossRefADSGoogle Scholar
  9. Y. Fujiwara, I. Yamada, Nucl. Instr. Meth. B 206, 875 (2003) CrossRefADSGoogle Scholar
  10. Y. Qiang, Y. Thurner, Th. Reiners, O. Rattunde, H. Haberland, Surf. Coat. Technol. 100-101, 27 (1998) Google Scholar
  11. M. Moseler, O. Rattunde, J. Nordiek, H. Haberland, Nucl. Instr. Meth. B 164, 522 (2000) CrossRefADSGoogle Scholar
  12. Quadrupole mass filter - QMF 200, Oxford applied research, version 1.1 Google Scholar
  13. K. Sattler, Handbook of thin film material, edited by H.S. Nakawa (Academic press, 2002), Vol. 5, Chap. 2 Google Scholar
  14. P.A. Montano, W. Schulze, B. Tesche, G.K. Shenoy, T.I. Morrison, Phys. Rev. B 30, 672 (1984) CrossRefADSGoogle Scholar
  15. J.M. Zuo, B.Q. Li, Phys. Rev. Lett. 88, 255502 (2002) CrossRefADSGoogle Scholar
  16. F. Zhang, Siu-Wai Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Appl. Phys. Lett. 80, 127 (2002) CrossRefADSGoogle Scholar
  17. I. Shyjumon, M. Gopinadhan, C.A. Helm, B.M. Smirnov, R. Hippler, Thin Solid Films (accepted, 2005) Google Scholar
  18. H. Haberland, Clusters of atoms and molecules (Springer-Verlag, New York, 1994) Google Scholar
  19. H. Haberland, B. von Issendorff, Ji Yufeng, T. Kolar, Phys. Rev. Lett. 69, 3212 (1992) CrossRefADSGoogle Scholar
  20. H. Haberland, M. Mall, M. Moseler, Y. Qiang, T. Reiners, Y. Thurner, J. Vac. Sci. Technol. A 12, 2925 (1994) CrossRefADSGoogle Scholar
  21. G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986) CrossRefADSGoogle Scholar
  22. C.A. Helm, P. Tippmann-Krayer, H. Möhwald, J. Als-Nielsen, K. Kjaer, Biophys. J. 60, 1457 (1991) Google Scholar
  23. H. Wulff, H. Steffen, in Low temperature plasma physics, edited by R. Hippler, S. Pfau, M. Schmidt, K.H. Schoenbach (Wiley-VCH, Berlin, 2001), Chap. 10 Google Scholar
  24. P. Klimanek, Mater. Sci. Forum 79-82, 73 (1991) Google Scholar
  25. D. Samsonov, J. Goree, J. Vac. Sci. Techn. A 17, 2835 (1999) CrossRefADSGoogle Scholar
  26. D. Samsonov, J. Goree, Phys. Rev. E 59, 1047 (1999) CrossRefADSGoogle Scholar
  27. Atomic and molecular beam methods, edited by G. Scoles (Oxford university press, Oxford, 1988), Vol. 1, Chap. 8 Google Scholar
  28. J. Vesenka, S. Manne, R. Giberson, T. Marsh, E. Henderson, Biophys. J. 65, 992 (1993) CrossRefGoogle Scholar
  29. P. Jonk, R. Hector, F. Wittenberg, K.H. Meiwes-Broer, Nucl. Instr. Meth. Phys. Res. B. 80/81, 818 (1993) Google Scholar
  30. C.L. Cleveland, U. Landman, Science 257, 355 (1992) ADSGoogle Scholar
  31. G. Betz, W. Husinsky, NIM B 122, 311 (1997) ADSGoogle Scholar
  32. S.J. Carroll, S. Pratontep, M. Streun, R.E. Palmer, S. Hobday, R. Smith, J. Chem. Phys. 113, 7723 (2000) CrossRefADSGoogle Scholar
  33. C. Xirouchaki, R.E. Palmer, Vaccum 66, 167 (2002) CrossRefGoogle Scholar
  34. Handbook of Chemistry and Physics, 80th edn. (CRC-press, Cleveland, OH, 1999-2000) Google Scholar
  35. K. Meyer, Physikalisch chemische Kristallographie, Deutscher Verlag für Grundstoffindustrie (Leipzig, 1968) Google Scholar
  36. B. Richter, H. Kuhlenbeck, J.J. Freund, P. Bagus, Phys. Rev. Lett. 93, 026805 (2004) CrossRefADSGoogle Scholar
  37. I. Lopez-Salido, D.C. Lim, Y.D. Kim, Surf. Sci. 588, 6 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • I. Shyjumon
    • 1
  • M. Gopinadhan
    • 1
  • O. Ivanova
    • 1
  • M. Quaas
    • 2
  • H. Wulff
    • 2
  • C. A. Helm
    • 1
  • R. Hippler
    • 1
  1. 1.Institut für Physik, Ernst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany
  2. 2.Institut für Chemie und Biochemie, Ernst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany

Personalised recommendations