First operation of a free-electron laser generating GW power radiation at 32 nm wavelength

  • V. Ayvazyan
  • N. Baboi
  • J. Bähr
  • V. Balandin
  • B. Beutner
  • A. Brandt
  • I. Bohnet
  • A. Bolzmann
  • R. Brinkmann
  • O. I. Brovko
  • J. P. Carneiro
  • S. Casalbuoni
  • M. Castellano
  • P. Castro
  • L. Catani
  • E. Chiadroni
  • S. Choroba
  • A. Cianchi
  • H. Delsim-Hashemi
  • G. Di Pirro
  • M. Dohlus
  • S. Düsterer
  • H. T. Edwards
  • B. Faatz
  • A. A. Fateev
  • J. Feldhaus
  • K. Flöttmann
  • J. Frisch
  • L. Fröhlich
  • T. Garvey
  • U. Gensch
  • N. Golubeva
  • H.-J. Grabosch
  • B. Grigoryan
  • O. Grimm
  • U. Hahn
  • J. H. Han
  • M. V. Hartrott
  • K. Honkavaara
  • M. Hüning
  • R. Ischebeck
  • E. Jaeschke
  • M. Jablonka
  • R. Kammering
  • V. Katalev
  • B. Keitel
  • S. Khodyachykh
  • Y. Kim
  • V. Kocharyan
  • M. Körfer
  • M. Kollewe
  • D. Kostin
  • D. Krämer
  • M. Krassilnikov
  • G. Kube
  • L. Lilje
  • T. Limberg
  • D. Lipka
  • F. Löhl
  • M. Luong
  • C. Magne
  • J. Menzel
  • P. Michelato
  • V. Miltchev
  • M. Minty
  • W. D. Möller
  • L. Monaco
  • W. Müller
  • M. Nagl
  • O. Napoly
  • P. Nicolosi
  • D. Nölle
  • T. Nuñez
  • A. Oppelt
  • C. Pagani
  • R. Paparella
  • B. Petersen
  • B. Petrosyan
  • J. Pflüger
  • P. Piot
  • E. Plönjes
  • L. Poletto
  • D. Proch
  • D. Pugachov
  • K. Rehlich
  • D. Richter
  • S. Riemann
  • M. Ross
  • J. Rossbach
  • M. Sachwitz
  • E. L. Saldin
  • W. Sandner
  • H. Schlarb
  • B. Schmidt
  • M. Schmitz
  • P. Schmüser
  • J. R. Schneider
  • E. A. Schneidmiller
  • H.-J. Schreiber
  • S. Schreiber
  • A. V. Shabunov
  • D. Sertore
  • S. Setzer
  • S. Simrock
  • E. Sombrowski
  • L. Staykov
  • B. Steffen
  • F. Stephan
  • F. Stulle
  • K. P. Sytchev
  • H. Thom
  • K. Tiedtke
  • M. Tischer
  • R. Treusch
  • D. Trines
  • I. Tsakov
  • A. Vardanyan
  • R. Wanzenberg
  • T. Weiland
  • H. Weise
  • M. Wendt
  • I. Will
  • A. Winter
  • K. Wittenburg
  • M. V. Yurkov
  • I. Zagorodnov
  • P. Zambolin
  • K. Zapfe
Ultraintense and Ultrashort Laser Fields

Abstract.

Many scientific disciplines ranging from physics, chemistry and biology to material sciences, geophysics and medical diagnostics need a powerful X-ray source with pulse lengths in the femtosecond range [1-4]. This would allow, for example, time-resolved observation of chemical reactions with atomic resolution. Such radiation of extreme intensity, and tunable over a wide range of wavelengths, can be accomplished using high-gain free-electron lasers (FEL) [5-10]. Here we present results of the first successful operation of an FEL at a wavelength of 32 nm, with ultra-short pulses (25 fs FWHM), a peak power at the Gigawatt level, and a high degree of transverse and longitudinal coherence. The experimental data are in full agreement with theory. This is the shortest wavelength achieved with an FEL to date and an important milestone towards a user facility designed for wavelengths down to 6 nm. With a peak brilliance exceeding the state-of-the-art of synchrotron radiation sources [4] by seven orders of magnitude, this device opens a new field of experiments, and it paves the way towards sources with even shorter wavelengths, such as the Linac Coherent Light Source [3] at Stanford, USA, and the European X-ray Free Electron Laser Facility [4] in Hamburg, Germany.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A VUV Free Electron Laser at the TESLA Test Facility at DESY. Conceptual Design Report, DESY, TESLA-FEL 95-03 (1995) Google Scholar
  2. F. Richard et al., TESLA Technical Design Report, DESY 2001-11 (2001) and http://tesla.desy.de Google Scholar
  3. The LCLS Design Study Group: LCLS Design Study Report, SLAC-R521, Stanford (1998) and http://www-ssrl.slac.stanford.edu/lcls/CDR Google Scholar
  4. R. Brinkmann et al., TESLA XFEL: First stage of the X-ray laser laboratory-Technical design report, DESY 2002-167 (2002) and http://xfel.desy.de Google Scholar
  5. A.M. Kondratenko, E.L. Saldin, Part. Accelerators 10, 207 (1980) Google Scholar
  6. Ya.S. Derbenev, A.M. Kondratenko, E.L. Saldin, Nucl. Instrum. Meth. 193, 415 (1982) CrossRefGoogle Scholar
  7. R. Bonifacio, C. Pellegrini, L.M. Narducci, Opt. Commun. 50, 373 (1984) CrossRefADSGoogle Scholar
  8. K.J. Kim, Phys. Rev. Lett. 57, 1871 (1986) CrossRefADSGoogle Scholar
  9. S. Krinsky, L.H. Yu, Phys. Rev. A 35, 3406 (1987) CrossRefADSGoogle Scholar
  10. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The Physics of Free Electron Lasers (Springer, Berlin, 1999) Google Scholar
  11. V. Ayvazyan et al., Phys. Rev. Lett. 88, 104802 (2002) CrossRefGoogle Scholar
  12. V. Ayvazyan et al., Eur. Phys. J. D 20, 149 (2002) CrossRefGoogle Scholar
  13. H. Wabnitz et al., Nature 420, 482 (2002) CrossRefGoogle Scholar
  14. L. Juha et al., Nucl. Instrum. Meth. A 507, 577 (2003) CrossRefGoogle Scholar
  15. The TTF FEL team, SASE FEL at the TESLA Test Facility, Phase 2, DESY Print TESLA-FEL 2002-01 (2002) Google Scholar
  16. M. Krasilnikov et al., Optimizing the PITZ Electron Source for the VUV FEL, Proc. EPAC 2004 Conference, Lucerne, Switzerland, 360 (2004) Google Scholar
  17. S. Schreiber, Commissioning of the VUV-FEL Injector at TTF, Proc. EPAC 2004 Conference, Lucerne, Switzerland, 351 (2004) Google Scholar
  18. K. Flöttmann, Ph. Piot, An Upgraded Injector for the TTF FEL User Facility, Proc. EPAC 2002 Conference, Paris, France, 1798 (2002) Google Scholar
  19. H. Weise, Superconducting RF Structures - Test Facilities and Results, Proc. 2003 Part. Acc. Conf., Portland, Oregon, 673 (2003) Google Scholar
  20. T. Limberg et al., Design and Performance Simulation of the TTF-FEL II Bunch Compression System, Proc. EPAC 2002 Conference, Paris, France, 811 (2002) Google Scholar
  21. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Expected properties of the radiation from VUV-FEL at DESY (femtosecond mode of operation), DESY Print TESLA-FEL 2004-06 (2004) Google Scholar
  22. J. Pflüger, Nucl. Instrum. Meth. A 445, 366 (2000) CrossRefADSGoogle Scholar
  23. M. Dohlus et al., Nucl. Instrum. Meth. A 530, 217 (2004) CrossRefGoogle Scholar
  24. K. Flöttmann, Astra User Manual, http://www.desy.de/∼mpyflo/Astra_dokumentation/ Google Scholar
  25. M. Borland, elegant: A flexible SDDS-Compilant Code for Accelerator Simulation, APS LS-287 (September 2000) Google Scholar
  26. B. Steffen et al., EOS Electro Optical Bunch Length Measurements at the VUV-FEL at DESY, Proc. 2005 Part. Acc. Conf., Knoxville, TN, USA (2005) Google Scholar
  27. P. Krejcik et al., Commissioning of the SPPS Linac Bunch Compressor, Proc. 2003 Part. Acc. Conf., Portland, Oregon, 423 (2003) Google Scholar
  28. R. Akre et al., Bunch length measurements using a transverse RF deflecting structure in the SLAC linac, Proc. EPAC 2002 Conference, Paris, France (2002) Google Scholar
  29. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Nucl. Instrum. Meth. A 429, 233 (1999) CrossRefADSGoogle Scholar
  30. A. Bytchkov et al., Nucl. Instrum. Meth. A 528, 254 (2004) CrossRefGoogle Scholar
  31. M. Richter et al., Appl. Phys. Lett. 83, 2970 (2003) CrossRefGoogle Scholar
  32. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Opt. Commun. 148, 383 (1998) CrossRefADSGoogle Scholar
  33. P. Nicolosi et al., On-line spectral monitoring of the VUV-FEL beam at DESY, Proc. 2004 FEL Conference, Trieste, Italy, pp. 415-418 (2004) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • V. Ayvazyan
    • 1
  • N. Baboi
    • 1
  • J. Bähr
    • 2
  • V. Balandin
    • 1
  • B. Beutner
    • 3
  • A. Brandt
    • 1
  • I. Bohnet
    • 1
  • A. Bolzmann
    • 4
  • R. Brinkmann
    • 1
  • O. I. Brovko
    • 5
  • J. P. Carneiro
    • 1
  • S. Casalbuoni
    • 1
  • M. Castellano
    • 6
  • P. Castro
    • 1
  • L. Catani
    • 7
  • E. Chiadroni
    • 7
  • S. Choroba
    • 1
  • A. Cianchi
    • 7
  • H. Delsim-Hashemi
    • 3
  • G. Di Pirro
    • 6
  • M. Dohlus
    • 1
  • S. Düsterer
    • 1
  • H. T. Edwards
    • 8
  • B. Faatz
    • 1
  • A. A. Fateev
    • 5
  • J. Feldhaus
    • 1
  • K. Flöttmann
    • 1
  • J. Frisch
    • 9
  • L. Fröhlich
    • 3
  • T. Garvey
    • 10
  • U. Gensch
    • 2
  • N. Golubeva
    • 1
  • H.-J. Grabosch
    • 2
  • B. Grigoryan
    • 11
  • O. Grimm
    • 1
  • U. Hahn
    • 1
  • J. H. Han
    • 2
  • M. V. Hartrott
    • 12
  • K. Honkavaara
    • 3
  • M. Hüning
    • 1
  • R. Ischebeck
    • 1
  • E. Jaeschke
    • 12
  • M. Jablonka
    • 13
  • R. Kammering
    • 1
  • V. Katalev
    • 1
  • B. Keitel
    • 1
  • S. Khodyachykh
    • 2
  • Y. Kim
    • 1
  • V. Kocharyan
    • 1
  • M. Körfer
    • 1
  • M. Kollewe
    • 1
  • D. Kostin
    • 1
  • D. Krämer
    • 12
  • M. Krassilnikov
    • 2
  • G. Kube
    • 1
  • L. Lilje
    • 1
  • T. Limberg
    • 1
  • D. Lipka
    • 12
  • F. Löhl
    • 3
  • M. Luong
    • 13
  • C. Magne
    • 13
  • J. Menzel
    • 1
  • P. Michelato
    • 14
  • V. Miltchev
    • 2
  • M. Minty
    • 1
  • W. D. Möller
    • 1
  • L. Monaco
    • 14
  • W. Müller
    • 15
  • M. Nagl
    • 1
  • O. Napoly
    • 13
  • P. Nicolosi
    • 16
  • D. Nölle
    • 1
  • T. Nuñez
    • 1
  • A. Oppelt
    • 2
  • C. Pagani
    • 14
  • R. Paparella
    • 13
  • B. Petersen
    • 1
  • B. Petrosyan
    • 2
  • J. Pflüger
    • 1
  • P. Piot
    • 8
  • E. Plönjes
    • 1
  • L. Poletto
    • 16
  • D. Proch
    • 1
  • D. Pugachov
    • 1
  • K. Rehlich
    • 1
  • D. Richter
    • 12
  • S. Riemann
    • 2
  • M. Ross
    • 9
  • J. Rossbach
    • 3
  • M. Sachwitz
    • 2
  • E. L. Saldin
    • 1
  • W. Sandner
    • 17
  • H. Schlarb
    • 1
  • B. Schmidt
    • 1
  • M. Schmitz
    • 1
  • P. Schmüser
    • 3
  • J. R. Schneider
    • 1
  • E. A. Schneidmiller
    • 1
  • H.-J. Schreiber
    • 2
  • S. Schreiber
    • 1
  • A. V. Shabunov
    • 5
  • D. Sertore
    • 14
  • S. Setzer
    • 15
  • S. Simrock
    • 1
  • E. Sombrowski
    • 1
  • L. Staykov
    • 2
  • B. Steffen
    • 1
  • F. Stephan
    • 2
  • F. Stulle
    • 1
  • K. P. Sytchev
    • 5
  • H. Thom
    • 1
  • K. Tiedtke
    • 1
  • M. Tischer
    • 1
  • R. Treusch
    • 1
  • D. Trines
    • 1
  • I. Tsakov
    • 18
  • A. Vardanyan
    • 11
  • R. Wanzenberg
    • 1
  • T. Weiland
    • 15
  • H. Weise
    • 1
  • M. Wendt
    • 1
  • I. Will
    • 17
  • A. Winter
    • 1
  • K. Wittenburg
    • 1
  • M. V. Yurkov
    • 1
  • I. Zagorodnov
    • 15
  • P. Zambolin
    • 16
  • K. Zapfe
    • 1
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.Deutsches Elektronen-Synchrotron DESYZeuthenGermany
  3. 3.Universität Hamburg HamburgGermany
  4. 4.Bayerische Julius-Maximilians UniversitätWürzburgGermany
  5. 5.Joint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  6. 6.INFN-LNF, via E. Fermi 40FrascatiItaly
  7. 7.INFN-Roma2, via della Ricerca Scientifica 1RomaItaly
  8. 8.Fermi National Accelerator LaboratoryBataviaUSA
  9. 9.Stanford Linear Accelerator Center, 2575 Sand Hill RoadMenlo ParkUSA
  10. 10.Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS, Université de Paris-SudOrsayFrance
  11. 11.Center for the Advancement of Natural Discoveries using Light Emission CANDLE, Acharyan 31YerevanArmenia
  12. 12.BESSY GmbH, Albert-Einstein-Str. 15BerlinGermany
  13. 13.CEA SaclayGif-sur-YvetteFrance
  14. 14.INFN Milano-LASA, via Fratelli Cervi 201,lSegrate (MI)Italy
  15. 15.Technische Universität Darmstadt, FB 18, Institut TEMFDarmstadtGermany
  16. 16.INFM, Dept. of Information Engineering, University of PadovaPadovaItaly
  17. 17.Max-Born-InstituteBerlinGermany
  18. 18.Institute for Nuclear Researches and Nuclear EnergySofiaBulgaria

Personalised recommendations