Effect of the molecular structure on the gas-surface scattering studied by supersonic molecular beam

  • T. KondoEmail author
  • H. S. Kato
  • T. Yamada
  • S. Yamamoto
  • M. Kawai
Gas-Surface Interactions


The experimental apparatus for investigating the gas-surface interaction has been newly developed. The coherent length of the helium, the energy resolution and the angular spread of the beam in the apparatus were established as ω= 16 nm, \(\Delta E/E = 2.4{\%}\) and Δθ= 0.5, respectively, through the measurements of the time-of-flight of He beam and of the angular intensity distributions of He scattered from LiF(001). The angular intensity distributions of Ar, N2 and CO scattered from the LiF(001) surface along the [100] azimuthal direction were then measured as a function of incident translational energy. The effects of the molecular structural anisotropy and center-of-mass position on the gas-surface inelastic collision at the corrugated surface are discussed with predictions based on a recently developed simple classical theory of the ellipsoid-washboard model.


68.49.Bc Atom scattering from surfaces (diffraction and energy transfer) 68.49.Df Molecule scattering from surfaces (energy transfer, resonances, trapping) 34.50.Dy Interactions of atoms and molecules with surfaces; photon and electron emission; neutralization of ions 68.49.-h Surface characterization by particle-surface scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.A. Barker, D.J. Auerbach, Surf. Sci. Rep. 4, 1 (1985) CrossRefMathSciNetGoogle Scholar
  2. C.T. Rettner, M.N.R. Ashfold, Dynamics of Gas-Surface Interactions (The Royal Society of Chemistry, 1991) Google Scholar
  3. R.J. Madix, Surface Reactions (Springer-Verlag, 1994) Google Scholar
  4. C.T. Rettner, D.J. Auerbach, J.C. Tully, A.W. Kleyn, J. Phys. Chem. 100, 13021 (1996) CrossRefGoogle Scholar
  5. M. Bonn, A.W. Kleyn, G.J. Kroes, Surf. Sci. 500, 475 (2002) CrossRefGoogle Scholar
  6. A.W. Kleyn, Chem. Soc. Rev. 32, 87 (2003) CrossRefGoogle Scholar
  7. R.M. Logan, R.E. Stickney, J. Chem. Phys. 44, 195 (1966) CrossRefGoogle Scholar
  8. A.W. Kleyn, T.C.M. Horn, Phys. Rep. 199, 191 (1991) CrossRefADSGoogle Scholar
  9. J.C. Tully, J. Chem. Phys. 92, 680 (1990) CrossRefADSGoogle Scholar
  10. B. Berenbak, S. Zboray, B. Riedmuller, D.C. Papageorgopoulos, S. Stolteb, A.W. Kleyn, Phys. Chem. Chem. Phys. 4, 68 (2002) CrossRefGoogle Scholar
  11. R.J. Lahaye, S. Stolte, S. Holloway, A.W.Kleyn, J. Chem. Phys. 104, 8301 (1996) CrossRefADSGoogle Scholar
  12. J.A. Stinett, R.J. Madix, J.C. Tully, J. Chem. Phys. 104, 3134 (1996) CrossRefADSGoogle Scholar
  13. T. Tomii, T. Kondo, S. Yagyu, S. Yamamoto, J. Vac. Sci. Technol. A 19, 675 (2001) CrossRefADSGoogle Scholar
  14. T. Kondo, T. Tomii, S. Yagyu, S. Yamamoto, J. Vac. Sci. Technol. A 19, 2468 (2001) CrossRefADSGoogle Scholar
  15. T. Kondo, D. Mori, R. Okada, M. Sasaki, S. Yamamoto, J. Chem. Phys. 123, 114712 (2005) CrossRefGoogle Scholar
  16. A.W. Kleyn, A.C. Luntz, D.J. Auerbach, Phys. Rev. Lett. 47, 1169 (1981) CrossRefADSGoogle Scholar
  17. K.R. Lykke, B.D. Kay, J. Phys. Condens. Matter 3, S65 (1991) Google Scholar
  18. M.A. Hines, R.N. Zare, J. Chem. Phys. 98, 9134 (1993) CrossRefADSGoogle Scholar
  19. A.W. Kleyn, Prog. Surf. Sci. 54, 407 (1997) CrossRefGoogle Scholar
  20. J.C. Polanyi, R.J. Wolf, J. Chem. Phys. 82, 1555 (1985) CrossRefADSGoogle Scholar
  21. D.C. Jacobs, R.N. Zare, J. Chem. Phys. 91, 3196 (1989) CrossRefADSGoogle Scholar
  22. J. Harris, A.C. Luntz, J. Chem. Phys. 91, 6421 (1989) CrossRefADSGoogle Scholar
  23. I. Iftimia, J.R. Manson, Phys. Rev. Lett. 87, 093201 (2001) CrossRefADSGoogle Scholar
  24. I. Iftimia, J.R. Manson, Phys. Rev. B 65, 125401 (2002) CrossRefADSGoogle Scholar
  25. I. Iftimia, J.R. Manson, Phys. Rev. B 65, 125412 (2002) CrossRefADSGoogle Scholar
  26. I. Moroz, J.R. Manson, Phys. Rev. B 69, 205406 (2004) CrossRefADSGoogle Scholar
  27. I. Moroz, H. Ambaya, J.R. Manson, J. Phys. Condens. Matter 16, S2953 (2004) Google Scholar
  28. I. Moroz, J.R. Manson, Phys. Rev. B 71, 113405 (2005) CrossRefADSGoogle Scholar
  29. T. Kondo, H.S. Kato, T. Yamada, S. Yamamoto, M. Kawai, J. Chem. Phys. 122, 244713 (2005) CrossRefGoogle Scholar
  30. F. Murakami, S. Yagyu, E.S. Gillman, M. Mizunuma, Y. Takeishi, Y. Kino, H. Kita, S. Yamamoto, J. Surf. Anal. 3, 481 (1997) Google Scholar
  31. T. Kondo, Ph.D. thesis, University of Tsukuba, 2003 Google Scholar
  32. T. Kondo, D. Mori, R. Okada, S. Yamamoto, Jpn J. Appl. Phys. 43, 1104 (2004) CrossRefGoogle Scholar
  33. G. Scoles, Atomic and Molecular Beam Methods (Oxford University Press, New York, 1988), Vol. 1; (1992), Vol. 2 Google Scholar
  34. T. Kondo, T. Tomii, T. Hiraoka, T. Ikeuchi, S. Yagyu, S. Yamamoto, J. Chem. Phys. 112, 9940 (2000) CrossRefADSGoogle Scholar
  35. T. Kondo, T. Sasaki, S. Yamamoto, J. Chem. Phys. 116, 7673 (2002) CrossRefADSGoogle Scholar
  36. T. Kondo, T. Sasaki, S. Yamamoto, J. Chem. Phys. 118, 760 (2003) CrossRefADSGoogle Scholar
  37. G. Comsa, Surf. Sci. 81, 57 (1979) CrossRefGoogle Scholar
  38. D. R. Frankl, Surf. Sci. 84, L485 (1979) Google Scholar
  39. G. Comsa, Surf. Sci. 84, L489 (1979) Google Scholar
  40. The beam flux is estimated by \(Q_a =\frac{P_1 -(\chi_a +\chi_b)P_0}{\left({{\chi_a}/{S_a}} \right)+\left({\chi_b}/{S_b}\right)X_b}\frac{1}{(\pi r^2)}\) [ Torr l/(cm2s)] , where P1, P0 is the pressure in the chamber 3 (beam on and off, respectively) measured by the ion gauge, Sj the pumping speed for the particle j in the chamber 3, χj the ionization probability for particle j, Xb the amount ratio of the particle b against particle a in the mixed beam and r the radii of the beam spot at the sample (r=0.25/2 cm) Google Scholar
  41. P.W. Atkins, Physical Chemistry, 6th edn. (Oxford University Press, 1998) Google Scholar
  42. M.J. Yacaman, Z.T. Ocana, J. Appl. Phys. 48, 418 (1977) CrossRefADSGoogle Scholar
  43. H. Höche, H. Bethge, J. Cryst. Growth. 33, 246 (1976) CrossRefGoogle Scholar
  44. G. Meyer, N.M. Amer, J. Appl. Phys. 56, 2100 (1990) Google Scholar
  45. G. Lange, J.P. Toennies, R. Vollmer, H. Weiss, J. Chem. Phys. 98, 10096 (1993) CrossRefADSGoogle Scholar
  46. P. Barraclough, P.G. Hall, Surf. Sci. 46, 393 (1974) CrossRefGoogle Scholar
  47. J. Estel, H. Hoinkes, H. Kaarman, H. Nahr, H. Wilsch, Surf. Sci. 54, 393 (1976) CrossRefGoogle Scholar
  48. Y. Ekinci, J.P. Toennies, Surf. Sci. 563, 127 (2004) CrossRefADSGoogle Scholar
  49. N. Garcia, J. Chem. Phys. 67, 897 (1977) CrossRefADSGoogle Scholar
  50. H. Legge, J.R. Manson, J.P. Toennies, J. Chem. Phys. 110, 8767 (1999) CrossRefADSGoogle Scholar
  51. T. Tomii, T. Kondo, T. Hiraoka, T. Ikeuchi, S. Yagyu, S. Yamamoto, J. Chem. Phys. 112, 9052 (2000) CrossRefADSGoogle Scholar
  52. S. Yagyu, F. Murakami, Y. Kino, S. Yamamoto, Jpn J. Appl. Phys. 37, 2642 (1998) CrossRefGoogle Scholar
  53. A.C. Wight, R.E. Miller, J. Chem. Phys. 109, 1976 (1998) CrossRefADSGoogle Scholar
  54. G. Armand, J. Lapujoulade, Y. Lejay, Surf. Sci. 63, 143 (1977) CrossRefGoogle Scholar
  55. C. R. Arumainayagam, M.C. McMaster, G.R. Schoofs, R.J. Madix, Surf. Sci. 222, 213 (1989) CrossRefGoogle Scholar
  56. D. Velic, R.J. Levis, Chem. Phys. Lett. 269, 59 (1997) CrossRefGoogle Scholar
  57. T. Kondo, R. Okada, D. Mori, S. Yamamoto, Surf. Sci. 566-568, 1153(2004) Google Scholar
  58. E.K. Grimmelmann, J.C. Tully, M.J. Cardillo, J. Chem. Phys. 72, 1039 (1980) CrossRefADSGoogle Scholar
  59. W.L. Nichols, J.H. Weare, J. Chem. Phys. 62, 3754 (1975) CrossRefADSGoogle Scholar
  60. W.L. Nichols, J.H. Weare, J. Chem. Phys. 63, 379 (1975) CrossRefADSGoogle Scholar
  61. W.L. Nichols, J.H. Weare, J. Chem. Phys. 66, 1075 (1977) CrossRefADSGoogle Scholar
  62. In the calculation, the rotational temperature of the molecule Tr is set to as 0 K, since Tr of the supersonic molecular beam is generally cold enough to neglect the effect on the intensity distribution. The probability S(η, ω/Vr) of a collision is assumed to be uniform, occurring at all molecular orientation angles η, since it has almost the same probabilities for all cases under our experimental conditions. The molecular mass is set to as 28 amu of CO and N2. The effective mass of the surface is set to 390 amu, which is derived from the analysis of the experimental Ar–LiF(001) scattering as shown in Figure 6 and as described the origin in Section 3.2. The moment of inertia is derived by the simple calculation of \(\frac{m_a \times m_b }{m_a +m_b }r_d^2 \), where rd is selected as reported value of CO (rd=0.1128 nm) from the hand book ref63. The semi-major axis of the ellipsoid b is set to 0.15 nm. Our experimental condition of θ+θ'=90 is included in the calculation for easy comparison with our experimental results. Google Scholar
  63. D.R. Lide, CRC Handbook of Chemistry and Physics, 81th edn. (CRC, New York, 1998), pp. 9-82 Google Scholar
  64. T. Kondo, T. Tomii, S. Yamamoto, Chem. Phys. (2005) in press Google Scholar
  65. E.W. Kuipers, M.G. Tenner, A.W. Kleyn, S. Stolte, Phys. Rev. Lett. 62, 2152 (1989) CrossRefADSGoogle Scholar
  66. G.H. Fecher, N. Bowering, M. Volkmer, B. Pawlitzky, U. Heinzmann, Surf. Sci. 230, L169 (1990) Google Scholar
  67. H. Asada, Jpn J. Appl. Phys. 20, 527 (1981) CrossRefGoogle Scholar
  68. M.G. Tenner, E.W. Kuipers, A.W. Kleyn, Surf. Sci. 242, 376 (1991) CrossRefGoogle Scholar
  69. For example. C.T. Reeves, B.A. Ferguson, C.B. Mullins, G.O. Sitz, B.A. Helmer, D.B. Graves, J. Chem. Phys. 111, 7567 (1999) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • T. Kondo
    • 1
    Email author
  • H. S. Kato
    • 1
  • T. Yamada
    • 1
  • S. Yamamoto
    • 2
  • M. Kawai
    • 1
    • 3
  1. 1.Surface Chemistry Laboratory, RIKEN (Institute of Chemical and Physical Research)SaitamaJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST) AIST Tsukuba Central 2TsukubaJapan
  3. 3.Department of Advanced Materials ScienceGraduate School of Frontier Sciences, University of TokyoChibaJapan

Personalised recommendations