Photodissociation of stored metal clusters

Fragment-abundance spectra after multisequential decay of Au30+
  • L. Schweikhard
  • K. Hansen
  • A. Herlert
  • M. D. Herráiz Lablanca
  • M. Vogel
Topical issue: Correlated matter in radiation fields: from femtosecond spectroscopy to the free electron laser


Ion trapping allows detailed studies of atomic clusters with various interactions and over a large range of timescales. An overview of methods at hand is given and a specific example is presented in detail where size-selected Au30+ clusters have been stored in a Penning trap and photofragmented by exposure to the third harmonic of a Nd:YAG laser. The resulting mass spectra were sampled after reaction periods varying from 10 μs to 1 s. The data are used to extract relative dissociation energies, which agree well with model-free values determined previously by other means, albeit with a slightly larger magnitude of the odd-even effect. Below n≃24 the relative dissociation energies extracted from the abundance spectra develop very little over the five orders of magnitude in time covered in the experiments. This behavior has been predicted, but not tested previously. Above n≃24 both spectra and dissociation energies develop odd-even effects after a storage time of 10–100 ms. Possible reasons for this behavior are discussed.


Spectroscopy Neural Network Mass Spectrum Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Jortner, Z. Phys. D 24, 247 (1992) CrossRefGoogle Scholar
  2. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993) CrossRefGoogle Scholar
  3. M. Brack, Rev. Mod. Phys. 65, 677 (1993) CrossRefGoogle Scholar
  4. M. Haruta, Catalysis Today 36, 153 (1997) CrossRefGoogle Scholar
  5. K. Abrahamsson, G. Andler, L. Bagge, E. Beebe, P. Carlé, H. Danared, S. Egnell, K. Ehrnstén, M. Engström, C.J. Herrlander, J. Hilke, J. Jeansson, A. Källberg, S. Leontein, L. Liljeby, A. Nilsson, A. Paal, K.-G. Rensfelt, U. Rosengård, A. Simonsson, A. Soltan, J. Starker, M. af Ugglas, Nucl. Instr. Meth. B 79, 269 (1993) CrossRefGoogle Scholar
  6. S.P. Møller, Nucl. Instr. Meth. A 394, 281 (1994) CrossRefGoogle Scholar
  7. A. Naaman, K.G. Bhushan, H.B. Pedersen, N. Altstein, O. Heber, M.L. Rappaport, R. Moalem, D. Zajfman, J. Chem. Phys. 113, 4662 (2000) CrossRefGoogle Scholar
  8. F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps, Physics and Techniques of Charged Particle Field Confinement, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 37, Springer, Berlin, 2005) Google Scholar
  9. M.A. Levine, R.E. Marrs, J.R. Henderson, D.A. Knapp, M.B. Schneider, Phys. Scripta T 22, 157 (1988) Google Scholar
  10. D. Gerlich, in Advances in Chemical Physics (John Wiley & Sons, New York, 1992), Vol. LXXXII, pp. 1-176 Google Scholar
  11. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986) CrossRefGoogle Scholar
  12. K. Blaum, G. Audi, D. Beck, G. Bollen, P. Delahaye, S. George, C. Guénaut, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, D. Lunney, M. Mukherjee, S. Schwarz, L. Schweikhard, C. Yazidjian, Nucl. Phys. A 752, 317c (2005) CrossRefGoogle Scholar
  13. G. Gabrielse, N.S. Bowden, P. Oxley, A. Speck, C.H. Storry, N. Tan, M. Wessels, D. Grzonka, W. Oelert, G. Schepers, T. Sefzick, J. Walz, H. Pittner, T.W. Hänsch, E.A. Hessels, Phys. Rev. Lett. 89, 213401 (2002) CrossRefPubMedGoogle Scholar
  14. A.G. Marshall, C.L. Hendrickson, G.S. Jackson, Mass Spectrom. Rev. 17, 1 (1998) CrossRefPubMedGoogle Scholar
  15. A. Herlert, S. Krückeberg, L. Schweikhard, M. Vogel, C. Walther, Phys. Scripta T80, 200 (1999) Google Scholar
  16. L. Schweikhard, A. Herlert, S. Krückeberg, M. Vogel, C. Walther, Philos. Mag. B 79, 1343 (1999) CrossRefGoogle Scholar
  17. C. Yannouleas, U. Landman, A. Herlert, L. Schweikhard, Phys. Rev. Lett. 86, 2996 (2001) CrossRefPubMedGoogle Scholar
  18. A. Herlert, L. Schweikhard, Int. J. Mass Spectrom. 229, 19 (2003) CrossRefGoogle Scholar
  19. L. Schweikhard, K. Hansen, A. Herlert, G. Marx, M. Vogel, Eur. Phys. J. D 24, 137 (2003) CrossRefGoogle Scholar
  20. T.G. Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley, J. Chem. Phys. 74, 6511 (1981) CrossRefGoogle Scholar
  21. H. Weidele, U. Frenzel, T. Leisner, D. Kreisle, Z. Phys. D 20, 411 (1991) CrossRefGoogle Scholar
  22. H. Schnatz, G. Bollen, P. Dabkievicz, P. Egelhof, F. Kern, H. Kalinowsky, L. Schweikhard, H. Stolzenberg, H.-J. Kluge, The ISOLDE Collaboration, Nucl. Instr. Meth. A 251, 17 (1986) CrossRefGoogle Scholar
  23. H.-U. Hasse, St. Becker, G. Dietrich, N. Klisch, H.-J. Kluge, M. Lindinger, K. Lützenkirchen, L. Schweikhard, J. Ziegler, Int. J. Mass Spectrom. Ion Proc. 132, 181 (1994) CrossRefGoogle Scholar
  24. G. Savard, St. Becker, G. Bollen, H.-J. Kluge, R.B. Moore, Th. Otto, L. Schweikhard, H. Stolzenberg, U. Wiess, Phys. Lett. A 158, 247 (1991) CrossRefGoogle Scholar
  25. U. Hild, G. Dietrich, S. Krückeberg, M. Lindinger, K. Lützenkirchen, L. Schweikhard, C. Walther, J. Ziegler, J. Chem. Phys. 57, 2786 (1998) Google Scholar
  26. G. Dietrich, S. Krückeberg, K. Lützenkirchen, L. Schweikhard, C. Walther, J. Chem. Phys. 112, 752 (2000) CrossRefGoogle Scholar
  27. C. Jackschath, I. Rabin, W. Schulze, Ber. Bunsen Ges. Phys. Chem. Chem. Phys. 96, 1200 (1992) Google Scholar
  28. M. Manninen, J. Mansikka-aho, H. Nishioka, Y. Takahashi, Z. Phys. D 31, 259 (1994) CrossRefGoogle Scholar
  29. M. Vogel, K. Hansen, A. Herlert, L. Schweikhard, Eur. Phys. J. D 16, 73 (2001) CrossRefGoogle Scholar
  30. K. Hansen K, E.E.B. Campbell, Phys. Rev. E 58, 5477 (1998) CrossRefGoogle Scholar
  31. C. Walther, G. Dietrich, W. Dostal, K. Hansen, S. Krückeberg, K. Lützenkirchen, L. Schweikhard, Phys. Rev. Lett. 83, 3816 (1999) CrossRefGoogle Scholar
  32. J.U. Andersen, C. Gottrup, K. Hansen, P. Hvelplund, M.O. Larsson, Eur. Phys. J. D 17, 189 (2001) CrossRefGoogle Scholar
  33. M. Vogel, K. Hansen, A. Herlert, L. Schweikhard, Phys. Rev. Lett. 87, 013401 (2001) CrossRefPubMedGoogle Scholar
  34. K. Hansen, U. Näher, Phys. Rev. A 60, 1240 (1999) CrossRefGoogle Scholar
  35. J. Borggreen, K. Hansen, F. Chandezon, T. Døssing, M. Elhajal, O. Echt, Phys. Rev. A 62, 013202 (2000) CrossRefGoogle Scholar
  36. J.U. Andersen, E. Bonderup, K. Hansen, P. Hvelplund, B. Liu, U.V. Pedersen, S. Tomita, Eur. Phys. J. D 24, 191 (2003) CrossRefGoogle Scholar
  37. K. Hansen, E.E.B. Campbell, Int. J. Mass Spectrom. 233, 215 (2004) CrossRefGoogle Scholar
  38. S. Prasalovich, K. Hansen, M. Kjellberg, V. Popok, E.E.B. Campbell, J. Chem. Phys. 123, 084317 (2005) CrossRefGoogle Scholar
  39. M. Vogel, K. Hansen, A. Herlert, L. Schweikhard, J. Phys. B: At. Mol. Opt. Phys. 36, 1073 (2003) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • L. Schweikhard
    • 1
  • K. Hansen
    • 2
  • A. Herlert
    • 1
  • M. D. Herráiz Lablanca
    • 3
  • M. Vogel
    • 4
  1. 1.Institut für Physik, Ernst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany
  2. 2.Department of PhysicsGöteborg UniversityGothenburgSweden
  3. 3.Institut für Physik, Johannes Gutenberg-UniversitätMainzGermany
  4. 4.Imperial College London, Prince Consort RoadLondonUK

Personalised recommendations