Influence of optical aberrations in an atomic gyroscope

  • J. Fils
  • F. Leduc
  • P. Bouyer
  • D. Holleville
  • N. Dimarcq
  • A. Clairon
  • A. Landragin
Atomic Physics

Abstract.

In atom interferometry based on light-induced diffraction, the optical aberrations of the laser beam splitters are a dominant source of noise and systematic effect. In an atomic gyroscope, this effect is dramatically reduced by the use of two atomic sources. But it remains critical while coupled to fluctuations of atomic trajectories, and appears as a main source of noise to the long term stability. Therefore we measure these contributions in our set-up, using cold cesium atoms and stimulated Raman transitions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Riehle, T. Kisters, A. Witte, J. Helmcke, Ch.J. Bordé, Phys. Rev. Lett. 67, 177 (1991); M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991) CrossRefADSGoogle Scholar
  2. E.M. Rasel, M. Oberthaler, H. Batelaan, J. Schmiedmayer, A. Zeilinger, Phys. Rev. Lett. 75, 2633 (1995); D.M. Giltner, R.W. McGowan, S.A. Lee, Phys. Rev. Lett. 75, 2638 (1995) CrossRefADSGoogle Scholar
  3. D.W. Keith, C. Ekstrom, Q.A. Turchette, D.E. Pritchard, Phys. Rev. Lett. 66, 2693 (1991) CrossRefADSGoogle Scholar
  4. Atom Interferometry, edited by P.R. Berman (Academic Press, London, 1997) Google Scholar
  5. R. Bingham et al., Assessment Study Report, ESA-SCI 10 (2000) Google Scholar
  6. Ch.J. Bordé, Laser Spectroscopy X, edited by M. ducloy, E. Giacobino, G. Camy (World Scientific, 1991), p. 239 Google Scholar
  7. T.L. Gustavson, A. Landragin, M.A. Kasevich, Class. Quant. Grav. 17, 1 (2000) Google Scholar
  8. A. Peters, K.Y. Chung, S. Chu, Nature 400, 849 (1999) ADSGoogle Scholar
  9. J.M. McGuirk, M.J. Snadden, M.A. Kasevich, Phys. Rev. Lett. 85, 4498 (2000) CrossRefADSGoogle Scholar
  10. A. Wicht, J.M. Hensley, E. Sarajlic, S. Chu, in Proceedings of the 6th Symposium on Frequency standards and metrology, edited by P. Gill (World Scientific, 2001), p. 193 Google Scholar
  11. K.U. Schreiber, A. Velikoseltsev, M. Rothacher, T. Klügel, G.E. Stedman, D.L. Wiltshire, J. Geophis. Res. 60, 615 (1997); K.U. Schreiber, A. Velikoseltsev, M. Rothacher, T. Klügel, G.E. Stedman, D.L. Wiltshire, J. Geophis. Res. 109 (2004); doi:10.1029/2003JB002803 Google Scholar
  12. F. Yver-Leduc, P. Cheinet, J. Fils, A. Clairon, N. Dimarcq, D. Holleville, P. Bouyer, A. Landragin, J. Opt. B: Quant. Semiclass. Opt. 5, S136 (2003) Google Scholar
  13. T.L. Gustavson, P. Bouyer, M.A. Kasevich, Proc. SPIE 3270, 62 (1998) ADSGoogle Scholar
  14. T. Trebst, T. Binnewies, J. Helmcke, F. Riehle, IEEE Trans. Inst. Meas. 50, 2165 (2001) CrossRefGoogle Scholar
  15. Ch.J. Bordé, in Advances in the Interplay between Quantum and Gravity Physics, edited by V. de Sabbada (Kluwer, Academic Publisher, 2001) Google Scholar
  16. C. Antoine, Ch.J. Bordé, Phys. Lett. A 306, 277 (2003) CrossRefADSGoogle Scholar
  17. A. Clairon, C. Salomon, S. Guellati, W. Phillips, Europhys. Lett. 16, 165 (1991) ADSGoogle Scholar
  18. D.W. Allan, Proc. IEEE 54, 221 (1966) CrossRefGoogle Scholar
  19. M. Born, E. Wolf, Principles of Optics, fifth edition (Pergamon Press, 1975) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • J. Fils
    • 1
  • F. Leduc
    • 1
  • P. Bouyer
    • 2
  • D. Holleville
    • 1
  • N. Dimarcq
    • 1
  • A. Clairon
    • 1
  • A. Landragin
    • 1
  1. 1.BNM-SYRTE, UMR 8630ParisFrance
  2. 2.Laboratoire Charles Fabry, UMR 8501OrsayFrance

Personalised recommendations