Kerr effect of molecular oxygen at λ=1064 nm

Experiment and theory
  • F. Bielsa
  • R. Battesti
  • C. Robilliard
  • G. Bialolenker
  • G. Bailly
  • G. Trénec
  • A. Rizzo
  • C. RizzoEmail author
Molecular Physics and Chemical Physics


We report a new measurement of the Kerr effect of molecular oxygen at λ= 1064 nm. The experimental value reported for the anisotropy of the index of refraction Δ nu l, (3.15±0.85)×10-25  m2 V-2 atm-1, is in good agreement with the value of 3.4×10-25 m2 V-2 atm-1 obtained via an ab initio calculation. We show that the dependence of the effect on the pressure is not linear because of the presence of a collision-induced absorption band around 1060 nm due to the transition from the X3 Σ- g ground state to the 1Δg state. We also give the value of the quadratic anisotropy Δnu q (-1.03±0.68)×10-25 m2 V-2 atm-2. We finally compare our ab initio theoretical and experimental results with previous existing data.


Oxygen Spectroscopy Neural Network Anisotropy State Physics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Kerr, Phil. Mag. 4, 337 (1875) Google Scholar
  2. J. Kerr, Phil. Mag. 4, 416 (1875) Google Scholar
  3. C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization, Dielectric in time–dependent fields (Elsevier, Amsterdam, 1978), Vol. II Google Scholar
  4. A.D. Buckingham, Proc. Phys. Soc. A 68, 910 (1955) zbMATHADSGoogle Scholar
  5. A.D. Buckingham, Proc. Roy. Soc. A 267, 271 (1962) zbMATHADSGoogle Scholar
  6. A.D. Buckingham, Proc. Phys. Soc. A 68, 905 (1955) zbMATHADSGoogle Scholar
  7. S. Carusotto, E. Iacopini, E. Polacco, F. Scuri, G. Stefanini, E. Zavattini, Nuovo Cim. D 5, 328 (1985) CrossRefADSGoogle Scholar
  8. E. Inbar, A. Arie, Appl. Phys. B 70, 849 (2000) ADSGoogle Scholar
  9. A.A. Mak, O.A. Orlov, V.I. Ustyugov, Sov. J. Quant. Electron. 12, 1574 (1982) ADSGoogle Scholar
  10. W.M. Breazeale, Phys. Rev. 48, 237 (1935) CrossRefADSGoogle Scholar
  11. C. Hermans, A.C. Vandaele, S. Fally, M. Carleer, R. colin, B. Coquart, A. Jenouvrier, M.F. Merienne, Absorption cross-section of the collision-induced bands of Oxygen from the UV to the NIR, in Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, edited by C. Camy-Peyret, A.A. Vigasin (Kluwer Academic Publishers, Netherlands, 2003), p. 193 Google Scholar
  12. A.R.W. McKellar, N.H. Rich, H.L. Welsh, Can. J. Phys. 50, 1 (1972) ADSGoogle Scholar
  13. V.I. Dianov-Klokov, Opt. Spectr. 20, 530 (1966) ADSGoogle Scholar
  14. R. Klotz, C.M. Marian, S.D. Peyerimhoff, B.A. Hess, R.J. Buenker, Opt. Spectr. 89, 223 (1984) ADSGoogle Scholar
  15. D. Spelsberg, W. Meyer, J. Chem. Phys. 101, 1282 (1994) CrossRefADSGoogle Scholar
  16. W. Rijks, M. van Heeringen, P. Wormer, J. Chem. Phys. 90, 6501 (1989) ADSGoogle Scholar
  17. Y. Luo, H. Ågren, B.F. Minaev, P. Jörgensen, J. Mol. Structure (Theochem) 336, 61 (1995) Google Scholar
  18. B.F. Minaev, Phys. Chem. Chem. Phys. 1, 3403 (1999) CrossRefGoogle Scholar
  19. D. Spelsberg, W. Meyer, J. Chem. Phys. 109, 9802 (1998) CrossRefADSGoogle Scholar
  20. B.F. Minaev, Spectrochim. Acta A 60, 1027 (2004) Google Scholar
  21. P. Neogrády, M. Medved, I. Cernusák, M. Urban, Mol. Phys. 100, 541 (2002) ADSCrossRefGoogle Scholar
  22. A. Cotton, M. Mouton, Compt. Rend. 141, 317 (1905) Google Scholar
  23. A.D. Buckingham, J.A. Pople, Proc. Phys. Soc. B 69, 1133 (1956) ADSGoogle Scholar
  24. C. Rizzo, A. Rizzo, D.M. Bishop, Int. Rev. Phys. Chem. 16, 81 (1997) Google Scholar
  25. D. Jonsson, P. Norman, O. Vahtras, H. Ågren, A. Rizzo, J. Chem. Phys. 106, 8552 (1997) CrossRefADSGoogle Scholar
  26. D.M. Bishop, P. Norman, Calculation of dynamic hyperpolarizabilities for small and medium sized molecules, in Handbook of Advanced Electric and Photonic Materials and Devices, Nonlinear Optical Materials, edited by H.S. Nalwa (Academic Press, San Diego, 2000), Chap. 1, Vol. 9 Google Scholar
  27. R.W.P. Drever, J.L. Hall, F.V. Kowalsky, J.H. amd, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983) CrossRefADSGoogle Scholar
  28. G. Cantatore, F.D. Valle, E. Milotti, P. Pace, E. Zavattini, E. Polacco, F. Perrone, C. Rizzo, G. Zavattini, G. Ruoso, Rev. Sci. Instrum. 66, 2785 (1995) CrossRefADSGoogle Scholar
  29. The vacuum chamber was kindly given to us by A. Arie and it is the one also used in reference InbarArie Google Scholar
  30. G.L.J.A. Rikken, C. Rizzo, Phys. Rev. A 63, 012107 (2000) ADSGoogle Scholar
  31. R.C. Jones, J. Opt. Soc. Am. 38, 671 (1948) ADSGoogle Scholar
  32. F. Brandi, F. della Valle, A.M. de Riva, P. Micossi, F. Perrone, C. Rizzo, G. Ruoso, G. Zavattini, Appl. Phys. B 65, 351 (1997) CrossRefADSGoogle Scholar
  33. F.A. Korolev, A.Y. Klementéva, Fizika. 35, 42 (1980) Google Scholar
  34. J. Olsen, P. Jørgensen, Time-dependent response theory with applications to self-consistent field and multiconfigurational self-consistent field wave functions, in Modern Electronic Structure Theory, edited by D.R. Yarkony (World Scientific, Singapore, 1995), Part II, p. 857 Google Scholar
  35. J. Olsen, P. Jørgensen, J. Chem. Phys. 82, 3235 (1985) CrossRefADSGoogle Scholar
  36. D.M. Bishop, Rev. Mod. Phys. 62, 343 (1990) CrossRefADSGoogle Scholar
  37. D.M. Bishop, B. Kirtman, J. Chem. Phys. 95, 2646 (1991) ADSGoogle Scholar
  38. D.M. Bishop, P. Norman, J. Chem. Phys. 111, 3042 (1999) CrossRefADSGoogle Scholar
  39. T.H. Dunning, J. Chem. Phys. 90, 1007 (1989) CrossRefADSGoogle Scholar
  40. R.A. Kendall, T.H. Dunning, R.J. Harrison, J. Chem. Phys. 96, 6796 (1992) CrossRefADSGoogle Scholar
  41. T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory (Chichester, New York, 1999) Google Scholar
  42. Y. I'Haya, F. Matsukawa, Int. J. Quant. Chem. Symp. 7, 181 (1973) Google Scholar
  43. P.H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972) CrossRefGoogle Scholar
  44. K. Andersson, M.R.A. Blomberg, M.P. Fülscher, G. Karlström, R. Lindh, P.Å. Malmqvist, J. Olsen, B.O. Roos, A.J. Sadlej, M. Schütz, L. Seijo, L. Serrano-Andrés, P.E.M. Siegbahn, P.O. Widmark, MOLCAS Version 4 (Lund University, Sweden, 1997) Google Scholar
  45. T. Helgaker, H.J.A. Jensen, P. Jørgensen, J. Olsen, K. Ruud, H. Ågren, A.A. Auer, K.L. Bak, V. Bakken, O. Christiansen, S. Coriani, P. Dahle, E.K. Dalskov, T. Enevoldsen, B. Fernandez, C. Hättig, K. Hald, A. Halkier, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K.V. Mikkelsen, P. Norman, M.J. Packer, T.B. Pedersen, T.A. Ruden, A. Sanchez, T. Saue, S.P.A. Sauer, B. Schimmelpfennig, K.O. Sylvester-Hvid, P.R. Taylor, O. Vahtras, dalton, an ab initio electronic structure program, Release 1.2, 2001 see dalton.html Google Scholar
  46. N.J. Bridge, A.D. Buckingham, Proc. R. Soc. Lond. A 295, 334 (1966) ADSGoogle Scholar
  47. A. Kumar, W.J. Meath, P. Bündigen, A.J. Thakkar, J. Chem. Phys. 105, 4827 (1996) Google Scholar
  48. S.A.C. McDowell, W.J. Meath, Can. J. Chem. 76, 483 (1998) CrossRefGoogle Scholar
  49. B. Fernández, C. Hättig, H. Koch, A. Rizzo, J. Chem. Phys. 110, 2872 (1999) ADSGoogle Scholar
  50. H. Koch, C. Hättig, H. Larsen, J. Olsen, P. Jørgensen, B. Fernández, A. Rizzo, J. Chem. Phys. 111, 10108 (1999) ADSGoogle Scholar
  51. C. Hättig, J. López Cacheiro, B. Fernández, A. Rizzo, Mol. Phys. 101, 1983 (2003) ADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • F. Bielsa
    • 1
  • R. Battesti
    • 2
  • C. Robilliard
    • 1
  • G. Bialolenker
    • 1
    • 3
  • G. Bailly
    • 1
  • G. Trénec
    • 1
  • A. Rizzo
    • 4
  • C. Rizzo
    • 1
    Email author
  1. 1.Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, CNRS/UPSToulouseFrance
  2. 2.Laboratoire National des Champs Magnétiques Pulsés, CNRS/UPS/INSAToulouseFrance
  3. 3.Nuclear Research Center NegevBeer-ShevaIsrael
  4. 4.Istituto per i Processi Chimico Fisici, CNRPisaItaly

Personalised recommendations