Advertisement

Electron induced functionalization of diamond by small organic groups

  • A. Lafosse
  • M. Bertin
  • D. Cáceres
  • C. Jäggle
  • P. Swiderek
  • D. Pliszka
  • R. AzriaEmail author
Surface Processes

Abstract.

In this work, we show that the interaction of low energy electrons with CH3CN molecules condensed on hydrogenated diamond substrates induces functionalization of the diamond. The process is discussed in terms of electron dissociation mechanisms of acetonitrile molecules and interaction of the subsequent fragments with the substrate. At 2 eV incident electron energy, the dissociative electron attachment reaction is alone operative, so that it is possible to demonstrate that these electrons induce exclusively covalent attachment of about 1 ML of H2CCN fragments on diamond through Cdiam–C and Cdiam–N linkages and to propose a description of the microscopic steps involved in the process.

Keywords

CH3CN Quantum Computing Organic Group Incident Electron Covalent Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.F. Bent, Surf. Sci. 500, 879 (2002) CrossRefGoogle Scholar
  2. M.A. Filler, S.T. Bent, Prog. Surf. Sci. 73, 1 (2003) CrossRefGoogle Scholar
  3. J.M. Buriak, Chem. Commun., 1051 (1999) Google Scholar
  4. K. Ushizawa, Y. Sato, T. Mitsomuri, T. Machinami, T. Ueda, T. Ando, Chem. Phys. Lett. 351, 105 (2002) CrossRefGoogle Scholar
  5. J. Terry, M.R. Linford, C. Wigren, R. Cao, P. Pianetta, C.E.D. Chidsey, Appl. Phys. Lett. 71, 1056 (1997) CrossRefGoogle Scholar
  6. Y. Chen, Y.-S. Luo, J.M. Seo, J.H. Weaver, Phys. Rev. B 43, 4527 (1991) CrossRefGoogle Scholar
  7. A. Hoffmann, A. Laikhtmann, S. Ustaze, M. Hadj-Hamou, M.N. Hedhili, J.-P. Guillotin, Y. Le Coat, D. Teillet Billy, R. Azria, M. Tronc, Phys. Rev. B 63, 045401 (2001) CrossRefGoogle Scholar
  8. W. Di, P. Rowntree, L. Sanche, Phys. Rev. B 52, 16618 (1995) CrossRefGoogle Scholar
  9. D.V. Klyachko, P. Rowntree, L. Sanche, Surf. Sci. 389, 29 (1997) CrossRefGoogle Scholar
  10. B.D. Thoms, P.E. Pehrsson, J.E. Butler, J. Appl. Phys. 75, 1804 (1994) CrossRefGoogle Scholar
  11. J. Ristein, W. Stein, L. Ley, Diamond Relat. Mater. 7, 626 (1998) CrossRefGoogle Scholar
  12. B.A. Sexton, N.R. Avery, Surf. Sci. 129, 21 (1983) CrossRefGoogle Scholar
  13. F. Tao, X.F. Cheng, Z.H. Wang, G.Q. Xu, J. Phys. Chem. B 106, 3890 (2002) CrossRefGoogle Scholar
  14. M. Heni, E. Illenberger, Int. J. Mass Spectrom. Ion Proc. 73, 127 (1986); W. Sailer, A. Pelc, P. Limão-Vieira, N.J. Mason, J. Limtrakul, P. Scheier, M. Probst, T.D. Märk, Chem. Phys. Lett. 381, 216 (2003) CrossRefGoogle Scholar
  15. T. Bakos, M.S. Valipa, D. Maroudas, J. Chem. Phys. 122, 054703 (2005) CrossRefGoogle Scholar
  16. M. Lachgar, Y. Le Coat, R. Azria, M. Tronc, E. Illenberger, Chem. Phys. Lett. 305, 408 (1999) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • A. Lafosse
    • 1
  • M. Bertin
    • 1
  • D. Cáceres
    • 1
  • C. Jäggle
    • 2
  • P. Swiderek
    • 2
  • D. Pliszka
    • 1
  • R. Azria
    • 1
    Email author
  1. 1.Laboratoire des Collisions Atomiques et Moléculaires, CNRS—Université Paris-Sud (UMR 8625, FR LUMAT), Bâtiment 351, Université Paris-SudOrsay CedexFrance
  2. 2.Institut für Angewandte und Physikalische Chemie (IAPC), Universität BremenBremenGermany

Personalised recommendations