Single molecule vibrationally mediated chemistry

Towards state-specific strategies for molecular handling
  • J. I. PascualEmail author
Surface Processes


Tunnelling electrons may scatter inelastically with an adsorbate, releasing part of their energy through the excitation of molecular vibrations. The resolution of inelastic processes with a low temperature scanning tunnelling microscope (STM) provides a valuable tool to chemically characterize single adsorbates and their adsorption mechanisms. Here, we present a molecular scale picture of single molecule vibrational chemistry, as resolved by STM. To understand the way a reaction proceed it is needed knowledge about both the excitation and damping of a molecular vibration. The excitation is mediated by the specific coupling between electronic molecular resonances present at the Fermi level and vibrational states of the adsorbate. Thus, the two-dimensional mapping of the inelastic signal with an STM provides the spatial distribution of the adsorbate electronic states (near the Fermi level) which are predominantly coupled to the particular vibrational mode observed. The damping of the vibration follows a competition between different mechanisms, mediated via the creation of electron-hole pairs or via anharmonic coupling between vibrational states. This latter case give rise to effective energy transfer mechanisms which eventually may focus vibrational energy in a specific reaction coordinate. In this single-molecule work-bench, STM provides alternative tools to understand reactivity in the limit of low excitation rate, which demonstrate the existence of state-specific excitation strategies which may lead to selectivity in the product of a reaction.


Fermi Level Scanning Tunnelling Microscope Single Molecule Vibrational State Molecular Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.D. Levine, R.B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity (Oxford University Press, New York, 1987) Google Scholar
  2. Laser spectroscopy and photochemistry on metal surfaces, edited by H.L. Dai, W.E. Ho (World Scientific, Singapore, 1995) Google Scholar
  3. Mode Selective Chemistry, edited by J. Jortner, R.D. Levine, B. Pullman (Kluwer Academic Publishers, Dordrecht, 1991) Google Scholar
  4. F.F. Crim, Science 249, 1237 (1990) PubMedGoogle Scholar
  5. F.F. Crim, Acc. Chem. Res. 32, 877 (1999) CrossRefGoogle Scholar
  6. D.G. Busch, S.W. Gao, R.A. Pelak, M.F. Booth, W. Ho, Phys. Rev. Lett. 75, 673 (1995) CrossRefPubMedGoogle Scholar
  7. G.P. Salam, M. Persson, R.E. Palmer, Phys. Rev. B 49, 10655 (1994) CrossRefGoogle Scholar
  8. P. Saalfrank, G.K. Paramonov, J. Chem. Phys. 107, 10723 (1997) CrossRefGoogle Scholar
  9. J. Higgings, A. Conjusteau, G. Scoles, S.L. Bernasek, J. Chem. Phys. 114, 5277 (2001) CrossRefGoogle Scholar
  10. F.-J. Kao, D.G. Busch, D. Gomes da Costa, W. Ho, Phys. Rev. Lett. 26, 4098 (1993) Google Scholar
  11. G. Ertl, M. Neumann, Z. Naturforsch. Teil A 27, 1607 (1972) Google Scholar
  12. L.P. Levine et al., J. Appl. Phys. 38, 331 (1967) CrossRefGoogle Scholar
  13. T.C. Chuang, I. Hussla, Phys. Rev. Lett. 52, 2045 (1984) CrossRefGoogle Scholar
  14. I. Hussla, H. Seki, T.C. Chuang, Z.W. Gortel, H.J. Kreutzer, P. Piercy, Phys. Rev. B 32, 3489 (1985) Google Scholar
  15. Z.W. Gortel, H.J. Kreuzer, P. Piercy, R. Teshima, Phys. Rev. B 27, 117 (1983) CrossRefGoogle Scholar
  16. D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990) CrossRefGoogle Scholar
  17. M.F. Crommie, C.P. Lutz, D.M. Eigler, Science 262, 218 (1993) Google Scholar
  18. J. Kliewer, R. Berndt, S. Crampin, New J. Phys. 3, 22 (2001) CrossRefGoogle Scholar
  19. K.F. Braun, K.H. Rieder, Phys. Rev. Lett. 88, 096801 (2002) CrossRefPubMedGoogle Scholar
  20. N. Nilius, T.M. Wallis, W. Ho, Science 297, 1853 (2002) CrossRefPubMedGoogle Scholar
  21. L. Bartels, G. Meyer, K.H. Rieder, Phys. Rev. Lett. 79, 697 (1997) Google Scholar
  22. B.C. Stipe, M.A. Rezaei, W. Ho, S. Gao, M. Persson, B.I. Lundqvist, Phys. Rev. Lett. 78, 4410 (1997) CrossRefGoogle Scholar
  23. S.W. Hla, L. Bartels, G. Meyer, K.H. Rieder, Phys. Rev. Lett. 85, 2777 (2000) CrossRefPubMedGoogle Scholar
  24. Y. Kim, T. Komeda, M. Kawai, Phys. Rev. Lett. 89, 126104 (2002) CrossRefPubMedGoogle Scholar
  25. P. Avouris, R.E. Walkup, A.R. Rossi, H.C. Akpati, P. Nordlander, T.C. Shen, G.C. Abeln, J.W. Lyding, Surf. Sci. 363, 368 (1996) CrossRefGoogle Scholar
  26. P.A. Sloan, R.E. Palmer, Nature 434, 367 (2005) CrossRefPubMedGoogle Scholar
  27. D.M. Eigler, C.P. Lutz, W.E. Rudge, Nature 352, 600 (1991) CrossRefGoogle Scholar
  28. B.C. Stipe, M.A. Rezaei, W. Ho, Phys. Rev. Lett. 81, 1263 (1998) CrossRefGoogle Scholar
  29. L. Bartels, M. Wolf, T. Klamroth, P. Saalfrank, A. Kuhnle, G. Meyer, K.H. Rieder, Chem. Phys. Lett. 313, 544 (1999) CrossRefGoogle Scholar
  30. T. Komeda, Y. Kim, M. Kawai, B.N.J. Persson, H. Ueba, Science 295, 2055 (2002) CrossRefPubMedGoogle Scholar
  31. J.I. Pascual, N. Lorente, Z. Song, H. Conrad, H.P. Rust, Nature 423, 525 (2003) CrossRefPubMedGoogle Scholar
  32. B.C. Stipe, M.A. Rezaei, W. Ho, Science 279, 1907 (1998) CrossRefPubMedGoogle Scholar
  33. L. Bartels, G. Meyer, K.H. Rieder, D. Velic, E. Knoesel, A. Hotzel, M. Wolf, G. Ertl, Phys. Rev. Lett. 80, 2004 (1998) CrossRefGoogle Scholar
  34. H. Ueba, Surf. Rev. Lett. 10, 771 (2003) CrossRefGoogle Scholar
  35. R.E. Walkup, D.M. Newns, P. Avouris, Phys. Rev. B 48, 1858 (1993) CrossRefGoogle Scholar
  36. N. Lorente, M. Persson, Phys. Rev. Lett. 85, 2997 (2000) CrossRefPubMedGoogle Scholar
  37. N. Lorente, J.I. Pascual, Phylos. Trans. 362, 1227 (2004) Google Scholar
  38. J. Gaudioso, W. Ho, J. Am. Chem. Soc. 123, 10095 (2001) CrossRefPubMedGoogle Scholar
  39. J. Gaudioso, W. Ho, Angew. Chem. Intern. Ed. 40, 4080 (2001) CrossRefGoogle Scholar
  40. J. Gaudioso, L.J. Lauhon, W. Ho, Phys. Rev. Lett. 85, 1918 (2000) CrossRefPubMedGoogle Scholar
  41. G. Binnig, G. García, H. Rohrer, Phys. Rev. B 32, 1336 (1985) CrossRefGoogle Scholar
  42. B.N.J. Persson, J.E. Demuth, Solid State Commun. 57, 769 (1986) CrossRefGoogle Scholar
  43. P.K. Hansma, Tunneling Spectroscopy (Plenum, New York, 1982) Google Scholar
  44. R.C. Jacklevic, J. Lambe, Phys. Rev. Lett. 17, 1139 (1966) CrossRefGoogle Scholar
  45. B.N.J. Persson, Baratoff, Phys. Rev. Lett. 59, 339 (1987) CrossRefPubMedGoogle Scholar
  46. J.I. Pascual, N. Lorente, in Properties of Single Molecules on Crystal Surfaces, edited by W. Hoffer (to be published, 2005) Google Scholar
  47. L.J. Lauhon, W. Ho, Rev. Sci. Instrum. 72, 216 (2001) CrossRefGoogle Scholar
  48. B.C. Stipe, M.A. Rezaei, W. Ho, Rev. of Sci. Instrum. 70, 137 (1999) CrossRefGoogle Scholar
  49. B.C. Stipe, M.A. Rezaei, W. Ho, Science 280, 1732 (1998) PubMedGoogle Scholar
  50. W. Ho, J. Chem. Phys. 117, 11033 (2002) CrossRefGoogle Scholar
  51. Y. Sainoo, Y. Kim, T. Komeda, M. Kawai, J. Chem. Phys. 120, 7249 (2004) CrossRefPubMedGoogle Scholar
  52. J.R. Hahn, H.J. Lee, W. Ho, Phys. Rev. Lett. 85, 1914 (2000) CrossRefPubMedGoogle Scholar
  53. J.I. Pascual, J. Gomez-Herrero, C. Rogero, A.M. Baro, D. Sanchez-Portal, E. Artacho, P. Ordejon, J.M. Soler, Chem. Phys. Lett. 321, 78 (2000) CrossRefGoogle Scholar
  54. D. Purdie, H. Bernhoff, B. Reihl, Surf. Sci. 364, 279 (1996) CrossRefGoogle Scholar
  55. J.G. Hou, J.L. Yang, H.Q. Wang, Q.X. Li, C.G. Zeng, H. Lin, W. Bing, D.M. Chen, Q.S. Zhu, Phys. Rev. Lett. 83, 3001 (1999) CrossRefGoogle Scholar
  56. H.Q. Wang, C.G. Zeng, B. Q.X. Li, J.L. Wang, J.L. Yang, J.G. Hou, Q.S. Zhu, Surf. Sci. 442, L1024 (1999) Google Scholar
  57. C. Rogero, J.I. Pascual, J. Gomez-Herrero, A.M. Baro, J. Chem. Phys. 116, 832 (2002) CrossRefGoogle Scholar
  58. T. David et al., Phys. Rev. B 50, 5810 (1994) CrossRefGoogle Scholar
  59. P. Ordejón et al., Phys. Rev. B 53, R1041 (1996) Google Scholar
  60. D. Sanchez Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quant. Chem. 65, 453 (1997) CrossRefGoogle Scholar
  61. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of fullerenes and carbon nanotubes (Academic Press, San Diego, 1996) Google Scholar
  62. J.I. Pascual, J.J. Jackiw, Z. Song, P.S. Weiss, H. Conrad, H.P. Rust, Phys. Rev. Lett. 86, 1050 (2001) CrossRefPubMedGoogle Scholar
  63. J.I. Pascual, J.J. Jackiw, Z. Song, P.S. Weiss, H. Conrad, H.P. Rust, Surf. Sci. 502, 1 (2002) CrossRefGoogle Scholar
  64. L.J. Lauhon, W. Ho, J. Phys. Chem. A 104, 2463 (2000) CrossRefGoogle Scholar
  65. T. Komeda, Y. Kim, Y. Fujita, Y. Sainoo, M. Kawai, J. Chem. Phys. 120, 5347 (2004) CrossRefPubMedGoogle Scholar
  66. B.N.J. Persson, H. Ueba, Surf. Sci. 502, 18 (2002) CrossRefGoogle Scholar
  67. T. Hertel, M. Wolf, G. Ertl, J. Chem. Phys. 102, 3414 (1995) CrossRefGoogle Scholar
  68. A.R. Burns, D.R. Jennison, E.B. Stechel, Phys. Rev. Lett. 72, 3895 (1994) CrossRefPubMedGoogle Scholar
  69. I. Hussla, T.C. Chuang, Ber. Bunsenges. Phys. Chem. 89, 294 (1985) Google Scholar
  70. K.J. Wu, D.V. Kevan, J. Chem. Phys. 94, 7494 (1991) CrossRefGoogle Scholar
  71. J.A. Prybyla, T.F. Heinz, J.A. Misewich, M.M.T. Loy, J.H. Glownia, Phys. Rev. Lett. 64, 1537 (1990) CrossRefPubMedGoogle Scholar
  72. W. Ho, Acc. Chem. Res. 31, 567 (1998) CrossRefGoogle Scholar
  73. H. Ueba, T. Mii, N. Lorente, B.N.J. Persson, J. Chem. Phys. (2005, in press) Google Scholar
  74. N. Lorente, J.I. Pascual, H. Ueba, Surf. Sci. (2005, in press) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für Experimentalphysik, Freie Universität Berlin Arnimallee 14BerlinGermany

Personalised recommendations