Advertisement

Electron impact ionization of atomic clusters in ultraintense laser fields

  • A. Heidenreich
  • I. Last
  • J. JortnerEmail author
Ultraintense and Ultrashort Laser Fields

Abstract.

In this paper we report on inner ionization of Xen clusters (n = 55- 2171) in ultraintense Gaussian laser fields (peak intensity I = 1015- 1020 Wcm-2, pulse width τ= 25 fs, frequency 0.35 fs-1). The cluster inner ionization process is induced by the barrier suppression ionization (BSI) mechanism and by electron impact ionization (EII), which occurs sequentially with the BSI. We address electron impact ionization of clusters, which pertains to inelastic reactive processes of the high-energy (100 eV–1 keV per electron) nanoplasma. We utilized experimental data for the energy dependence of the electron impact ionization cross-sections of Xej+ (j = 1-10) ions, which were fit by an empirical three-parameter Lotz-type equation, to explore EII in clusters by molecular dynamics simulations. Information was obtained on the yields and time-resolved dynamics of the EII levels (i.e., number nimp of electrons per cluster atom) in the Xen clusters and their dependence on the laser intensity and cluster size. The relative long-time (t = 90 fs) yields for EII, nimp/nii (where nii is the total inner ionization yield) are rather low and increase with decreasing the laser intensity. In the intensity range I = 1015-1016 Wcm-2, nimp/nii = 0.21 for n = 2171 and nimp/nii = 0.09-0.14 for n = 459, while for I = 1018-1020 Wcm-2, nimp/nii = 0.01-0.05. The difference Δnimp between the EII yield at long time and at the termination of the laser pulse reflects on ionization dynamics by the nanoplasma when the laser pulse is switched off. For Xe2171 in the lower intensity domain, Δ nimp = 0.9 at I = 1015 Wcm-2 and Δnimp = 0.4 at 1016 Wcm-2, reflecting on EII by the persistent nanoplasma under “laser free” conditions, while in the higher intensity domain of I = 1017 - 1018 Wcm-2, Δnimp is negligibly small due to the depletion of the transient nanoplasma.

Keywords

Laser Pulse Molecular Dynamic Molecular Dynamic Simulation Pulse Width Cluster Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Zweiback, R.A. Smith, T.W. Cowan, G. Hays, K.B. Wharton, V.P. Yanovsy, T. Ditmire, Phys. Rev. Lett. 84, 2634 (2000) CrossRefPubMedGoogle Scholar
  2. R.W. Madison, P.K. Patel, D. Price, A. Edens, M. Allen, T.E. Cowan, J. Zweiback, T. Ditmire, Phys. Plasmas 11, 270 (2004) CrossRefGoogle Scholar
  3. V. Kumarappan, M. Krishnamurthy, D. Mathur, Phys. Rev. A 67, 063207 (2003) Google Scholar
  4. G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, M. Schmidt, Phys. Rev. Lett. 89, 065005 (2002) CrossRefPubMedGoogle Scholar
  5. T. Ditmire, J.W.G. Tisch, E. Springate, M.B. Mason, N. Hay, J.P. Marangos, M.H.R. Hutchinson, Phys. Rev. Lett. 78, 2832 (1997) Google Scholar
  6. K. Kondo, A.B. Borisov, C. Jordan, A. McPherson, W.A. Schroeder, K. Boyer, C.K. Rhodes, Phys. Rev. B 30, 2707 (1997) Google Scholar
  7. T. Ditmire, E. Springate, J.W.G. Tisch, Y.L. Shao, M.B. Mason, N. Hay, J.P. Marangos, M.H.R. Hutchinson, Phys. Rev. A 57, 369 (1998) CrossRefGoogle Scholar
  8. M. Lezius, S. Dobosz, D. Normand, M. Schmidt, Phys. Rev. Lett. 80, 261 (1998) CrossRefGoogle Scholar
  9. E. Springate, N. Hay, J.W.G. Tisch, M.B. Mason, T. Ditmire, M.H.R. Hutchinson, J.P. Marangos, Phys. Rev. A 57, 063201 (2000) CrossRefGoogle Scholar
  10. K.J. Mendham, N. Hay, M.B. Mason, J.W.G. Tisch, J.P. Marangos, Phys. Rev. A 64, 055201 (2001) CrossRefGoogle Scholar
  11. M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, P.V. Nickles, Eur. Phys. J. D 14, 331 (2001) CrossRefGoogle Scholar
  12. M. Lezius, V. Blanchet, M.Yu. Ivanov, A. Stolow, J. Chem. Phys. 117, 1575 (2002) CrossRefGoogle Scholar
  13. Y. Fukuda, K. Yamakawa, Y. Akahane, M. Aoyama, N. Inoue, H. Ueda, Y. Kishimoto, Phys. Rev. A 67, 061201 (2003) CrossRefGoogle Scholar
  14. J. Schulz, H. Habnitz, T. Laarmann, S. Gürtler, W. Laasch, A. Swideriski, Th. Möller, A.A.B. de Castro, Nucl. Instr. Meth. Phys. A 507, 572 (2003) Google Scholar
  15. S. Zamith, T. Martchenko, Y. Ni, S.A. Aseyev, H.G. Muller, M.J.J. Vrakking, Phys. Rev. A 70, 011201 (2004) CrossRefGoogle Scholar
  16. J. Purnell, E.M. Snyder, S. Wei, A.W. Castleman Jr., Chem. Phys. Lett. 229, 333 (1994) Google Scholar
  17. J.W.G. Tisch, N. Hay, E. Springate, E.T. Gumbrell, M.H.R. Hutchinson, J.P. Marangos, Phys. Rev. A 60, 3076 (1999) CrossRefGoogle Scholar
  18. T. Ditmire, Phys. Rev. A 57, R4094 (1998) Google Scholar
  19. I. Last, J. Jortner, Phys. Rev. A 62, 013201 (2000) CrossRefGoogle Scholar
  20. K. Ishikava, T. Blendski, Phys. Rev. A 62, 063204 (2000) CrossRefGoogle Scholar
  21. I. Last, J. Jortner, Phys. Rev. A 64, 063201 (2001) CrossRefGoogle Scholar
  22. V.P. Krainov, A.S. Roschchupkin, Phys. Rev. A 64, 063204 (2001) CrossRefGoogle Scholar
  23. Ch. Siedschlag, J.M. Rost, Phys. Rev. A 67, 013404 (2003) CrossRefGoogle Scholar
  24. I. Last, J. Jortner, J. Chem. Phys. 121, 3030 (2004) CrossRefPubMedGoogle Scholar
  25. I. Last, J. Jortner, J. Chem. Phys. 121, 8329 (2004) CrossRefPubMedGoogle Scholar
  26. R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys. Rev. B 62, 13167 (2000) Google Scholar
  27. U. Andiel, K. Eidmann, K. Witte, I. Uschmann, E. Förster, Appl. Phys. Lett. 80, 198 (2002) Google Scholar
  28. I. Last, J. Jortner, J. Chem. Phys. 120, 1348 (2004) CrossRefPubMedGoogle Scholar
  29. C. Rose-Petruck, K.J. Schafer, K.R. Wilson, C.P.J. Barty, Phys. Rev. A 55, 1182 (1997) Google Scholar
  30. W. Lotz, Z. Phys. 216, 241 (1968) CrossRefGoogle Scholar
  31. I. Last, J. Jortner, J. Chem. Phys. 120, 1336 (2004) CrossRefPubMedGoogle Scholar
  32. D.P. Almeida, J. Electron Spectrosc. Relat. Phenom. 122, 1 (2002) CrossRefGoogle Scholar
  33. C. Achenbach, A. Mueller, E. Salzborn, R. Becker, J. Phys. B 17, 1405 (1984) Google Scholar
  34. D.C. Griffin, C. Bottcher, M.S. Pindzola, S.M. Younger, D.C. Gregory, D.H. Crandall, Phys. Rev. A 29, 1729 (1984) CrossRefGoogle Scholar
  35. D.C. Gregory, D.H. Crandall, Phys. Rev. A 27, 2338 (1983) CrossRefGoogle Scholar
  36. M.E. Bannister, D.W. Mueller, L.J. Wang, M.S. Pindzola, D.C. Griffin, D.C. Gregory, Phys. Rev. A 38, 38 (1988) CrossRefPubMedGoogle Scholar
  37. G. Hofmann, J. Neumann, U. Pracht, K. Tinschert, M. Stenke, R. Voelpel, E. Salzborn, AIP Conference Proceedings 274 (International Conference on the Physics of Highly Charged Ions, 1992), 485 (1993) Google Scholar
  38. W. Lotz, Z. Phys. 206, 205 (1967) CrossRefGoogle Scholar
  39. R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981) Google Scholar
  40. L.D. Landau, E.M. Lifshitz, Mechanics (Pergamon Press, Oxford, 1960) Google Scholar
  41. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipcs, K. Ferencz, Ch. Spielmann, S. Sartania, F. Krausz, Opt. Lett. 22, 522 (1997) Google Scholar
  42. G. Steinmeyer, D.H. Sutter, L. Gallmann, N. Matuschek, U. Keller, Science 286, 1507 (1999) CrossRefPubMedGoogle Scholar
  43. X. Liu, H. Rottke, E. Eremina, W. Sandner, E. Goulielmakis, K.O. Keeffe, M. Lezius, F. Krausz, F. Lindner, M.G. Schätzel, G.G. Paulus, H. Walther, Phys. Rev. Lett. 93, 263001 (2004) CrossRefPubMedGoogle Scholar
  44. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993) CrossRefPubMedGoogle Scholar
  45. C. Figueira de Morisson Faria, X. Liu, W. Becker, H. Schomerus, Phys. Rev. A 69, 021402 (R) (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.School of Chemistry, Tel Aviv UniversityTel AvivIsrael

Personalised recommendations