DNA strand breaks induced by concerted interaction of H radicals and low-energy electrons

A computational study on the nucleotide of cytosine
  • I. Dąbkowska
  • J. Rak
  • M. GutowskiEmail author
Processes in Biomolecules


We propose a mechanism of DNA single strand breaks induced by low-energy electrons. Density functional theory calculations have been performed on a neutral, hydrogenated, and/or negatively charged nucleotide of cytosine in the gas phase to identify barriers for the phosphate-sugar O–C bond cleavage. Attachment of the first excess electron induces intermolecular proton transfer to cytosine. The resulting neutral radical of hydrogenated cytosine binds another excess electron, and the excess charge is localized primarily on the C6 atom. A barrier encountered for proton transfer from the C2’ atom of the adjacent sugar unit to the C6 atom of cytosine is 3.6 and 5.0 kcal/mol, based on the MPW1K and B3LYP electronic energies corrected for zero-point vibrations, respectively. The proton transfer is followed by a barrier-free sugar-phosphate C–O bond cleavage. The proton transfer is impossible for the neutral nucleotide, as there is no local minimum for the product. In the case of anionic and hydrogenated nucleotides the same barrier determined at the B3LYP level is as large as 29.3 and 22.4 kcal/mol respectively. This illustrates that the consecutive hydrogenation and electron attachment make the nucleotide of cytosine susceptible to a strand break. The rate of the C–O bond cleavage in the anion of hydrogenated nucleotide of cytosine is estimated to be ca. 1010  s-1. The proposed mechanism proceeds through bound anionic states, not through metastable states with finite lifetimes and discrete energy positions with respect to the neutral target. The results suggest that at least for DNA without hydration even very low-energy electrons may cleave the DNA backbone.


Cytosine Bond Cleavage Proton Transfer Strand Break Density Functional Theory Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.D. Lenherr, M.G. Omerod, Nature 225, 546 (1970) CrossRefPubMedGoogle Scholar
  2. C. von Sonntag, The Chemical Basis of Radiation Biology (Taylor and Francis, Philadelphia, 1987) Google Scholar
  3. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) CrossRefPubMedGoogle Scholar
  4. L. Sanche, Mass Spectrom. Rev. 21, 349 (2002) CrossRefPubMedGoogle Scholar
  5. H. Abdoul-Carime, L. Sanche, Int. J. Radiat. Biol. 78, 89 (2002) CrossRefPubMedGoogle Scholar
  6. G. Hanel, B. Gstir, S. Denifl, P. Scheier, M. Probst, B. Farizon, M. Farizon, E. Illenberger, T.D. Märk, Phys. Rev. Lett. 90, 188104 (2003) CrossRefPubMedGoogle Scholar
  7. H. Abdoul-Carime, S. Golhke, E. Illenberger, Phys. Rev. Lett. 92, 168103 (2004) PubMedGoogle Scholar
  8. H. Abdoul-Carime, S. Golhke, E. Fischbach, J. Scheike, E. Illenberger, Chem. Phys. Lett. 387, 267 (2002) CrossRefGoogle Scholar
  9. S. Ptasińska, S. Denifl, P. Scheier, T.D. Märk, J. Chem. Phys. 120, 8505 (2004) CrossRefPubMedGoogle Scholar
  10. S. Ptasińska, S. Denifl, V. Grill, T.D. Märk, P. Scheier, S. Gohlke, M.A. Huels, E. Illenberger, Angew. Chem. Int. Ed. 44, 1647 (2005) CrossRefGoogle Scholar
  11. S. Gohlke, E. Illenberger, Europhys. News, 33, 207 (2002) Google Scholar
  12. M.A. Huels, L. Parenteau, L. Sanche, J. Phys. Chem. B 108, 16303 (2004) CrossRefGoogle Scholar
  13. F. Martin, P.D. Burrow, Z. Cai, P. Cloutier, D. Hunting, L. Sanche, Phys. Rev. Lett. 93, 068101 (2004) CrossRefPubMedGoogle Scholar
  14. R. Barrios, P. Skurski, J. Simons, J. Phys. Chem. B 106, 7991 (2002) CrossRefGoogle Scholar
  15. X. Li, M.D Sevilla, L. Sanche, J. Am. Chem. Soc. 125, 13668 (2003) CrossRefPubMedGoogle Scholar
  16. J. Berdys, I. Anusiewicz, P. Skurski, J. Simons, J. Am. Chem. Soc. 126, 6441 (2002) CrossRefGoogle Scholar
  17. J. Berdys, I. Anusiewicz, P. Skurski, J. Simons, J. Phys. Chem. A 108, 2999 (2004) CrossRefGoogle Scholar
  18. M. Gutowski, I. Dąbkowska, J. Rak, S. Xu, J.M. Nilles, D. Radisic, K.H. Bowen Jr, Eur. Phys. J. D 20, 431 (2002) CrossRefGoogle Scholar
  19. D. Radisic, K.H. Bowen Jr, I. Dąbkowska, P. Storoniak, J. Rak, M. Gutowski, J. Am. Chem. Soc. 127, 6443 (2005), and references therein CrossRefPubMedGoogle Scholar
  20. I. Dąbkowska, J. Rak, M. Gutowski, J. Phys. Chem. B (2005, submitted) Google Scholar
  21. K. Aflatooni, G.A. Gallup, P.D. Burrow, J. Phys. Chem. A 102, 6205 (1998) CrossRefGoogle Scholar
  22. C. Defrançois, H. Abdoul-Carime, J.P. Schermann, J. Chem. Phys. 104, 7792 (1996) CrossRefGoogle Scholar
  23. J.H. Hendricks, S.A. Lyapustina, H.L. de Clercq, K.H. Bowen Jr, J. Chem. Phys. 108, 8 (1998) CrossRefGoogle Scholar
  24. X. Li, Z. Cai, M.D. Sevilla, J. Phys. Chem. A 106, 1596 (2002), and references therein CrossRefGoogle Scholar
  25. M. Harańczyk, M. Gutowski, J. Am. Chem. Soc. 127, 699 (2005) CrossRefPubMedGoogle Scholar
  26. M. Harańczyk, J. Rak, M. Gutowski, J. Phys. Chem. A (2005, accepted) Google Scholar
  27. R.A. Bachorz, J. Rak, M. Gutowski, Phys. Chem. Chem. Phys. 7, 2116 (2005) CrossRefGoogle Scholar
  28. M. Harańczyk, M. Gutowski, Angew. Chem. Int. Ed. (2005, accepted) Google Scholar
  29. K. Mazurkiewicz, R.A. Bachorz, M. Gutowski, J. Rak, J. Phys. Chem. B (2005, submitted) Google Scholar
  30. B.C. Garrett, D.A. Dixon, D.M. Camaioni, D.M. Chipman, M.A. Johnson, C.D. Jonah, G.A. Kimmel, J.H. Miller, T. Rescigno, P.J. Rossky, S.S. Xantheas, S.D. Colson, A.H. Laufer, D. Ray, P.F. Barbara, K.H. Bowen, S.E. Bradforth, I. Carmichael, R. Corrales, J.P. Cowin, M. Dupuis, J.A. Franz, M. Gutowski, K.D. Jordon, B.D. Kay, C.W. Mccurdy, D. Meisel, S. Mukamel, A.R. Nilsson, T.M. Orlando, N.G. Petrik, S.M. Pimblott, J.R. Rustad, G.K. Schenter, S.J. Singer, L. Wang, D.M. Bartels, K.H. Becker, J.V. Coe, K.B. Eisenthal, J.A. La Verne, S.V. Lymar, T.E. Madey, A. Tokmakoff, C. Wittig, T.S. Zwier, Chem. Rev. 105, 355 (2005) CrossRefPubMedGoogle Scholar
  31. B. Sutherland, P.V. Bennett, O. Sidorkina, J. Laval, Biochem. 39, 8026 (2000) CrossRefGoogle Scholar
  32. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) CrossRefGoogle Scholar
  33. W. Kohn, L. Sham, J. Phys. Rev. A 140, 1133 (1965) CrossRefGoogle Scholar
  34. A.D. Becke, Phys. Rev. A, 38, 3098 (1988) Google Scholar
  35. A.D. Becke, J. Chem. Phys. 98, 5648 (1993) CrossRefGoogle Scholar
  36. C. Lee, W. Yang, R.G. Paar, Phys. Rev. B 37, 785 (1988) CrossRefGoogle Scholar
  37. B.J. Lynch, P.L. Fast, M. Harris, D.G. Truhlar, J. Phys. Chem. A 104, 4811 (2000) CrossRefGoogle Scholar
  38. Gaussian 03, Revision C.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J. M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford CT, 2004 Google Scholar
  39. J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer III, Chem. Rev. 102, 231 (2002) CrossRefPubMedGoogle Scholar
  40. J.P. Stewart, J. Comput. Chem. 10, 221 (1989) CrossRefGoogle Scholar
  41. A.O. Colson, M.D. Sevilla, Int. J. Radiat. Biol. 67, 627 (1995) PubMedGoogle Scholar
  42. X. Li, Z. Cai, M.D. Sevilla, J. Phys. Chem. A 106, 9345 (2002) CrossRefGoogle Scholar
  43. C. Willis, A.W. Boyd, A.E. Rothwell, O.A. Miller, Int. J. Radiat. Phys. Chem. 1, 373 (1969) CrossRefGoogle Scholar
  44. G.G. Prive, K. Yanagi, R.E. Dickerson, J. Mol. Biol. 217, 177 (1991) CrossRefPubMedGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Chemical Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  2. 2.Department of ChemistryUniversity of GdańskGdańskPoland
  3. 3.Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations