CO dynamics induced by tunneling electrons: differences on Cu(110) and Ag(110)

  • N. LorenteEmail author
  • H. Ueba
Surface Processes


The electronic current originating in a scanning tunneling microscope (STM) can be used to induce motion and desorption of adsorbates on surfaces. The manipulation of CO molecules on noble metal surfaces is an academic case that has received little theoretical attention. Here, we do thorough density functional theory calculations that explore the chemisorption of CO on Cu(110) and Ag(110) surface and its vibrational properties. The STM induced dynamics are explored after excitation of the highest lying mode, the C–O stretch. In order to give a complete account of this dynamics, the lifetime of the different CO modes is evaluated (by only including the mode decay into electronic excitations of the host surface) as well as the intermode coupling. Hence, after excitation of the stretch mode, the lower-energy modes are populated via intermode coupling and depopulated by electron-hole excitations. This study reveals the intrinsic features of the STM induced motion of CO on Cu(110) and Ag(110).


Density Functional Theory Chemisorption Noble Metal Scanning Tunneling Microscope Mode Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. Binnig, H. Röhrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982) CrossRefGoogle Scholar
  2. D.M. Eigler, E. Schweizer, Nature 344, 524 (1990) CrossRefGoogle Scholar
  3. G. Dujardin, R.E. Walkup, Ph. Avouris, Science 255, 1232 (1992); B.C. Stipe, M.A. Rezaei, W. Ho, S. Gao, M. Persson, B.I. Lundqvist, Phys. Rev. Lett. 78, 4410 (1997) Google Scholar
  4. H.J. Lee, W. Ho, Science 286, 1719 (1999) CrossRefPubMedGoogle Scholar
  5. B.J. McIntyre, M. Salmeron, G.A. Somorjai, Science 265, 1415 (1994) Google Scholar
  6. B.C. Stipe, M.A. Rezaei, W. Ho, Science 280, 1732 (1998) PubMedGoogle Scholar
  7. T. Komeda, Y. Kim, M. Kawai, B.N.J. Persson, H. Ueba, Science 295, 2055 (2002) CrossRefPubMedGoogle Scholar
  8. J.I. Pascual, N. Lorente, Z. Song, H. Conrad, H.-P. Rust, Nature 423, 525 (2003) CrossRefPubMedGoogle Scholar
  9. L. Bartels, G. Meyer, K.-H. Rieder, D. Velic, E. Knoese, A. Hotzel, M. Wolf, G. Ertl, Phys. Rev. Lett. 80, 2004 (1998) CrossRefGoogle Scholar
  10. M.-L. Bocquet, P. Sauter, Surf. Sci. 360, 128 (1996) CrossRefGoogle Scholar
  11. B.N.J. Persson, H. Ueba, Surf. Sci. 502/503, 18 (2002) Google Scholar
  12. L.J. Lauhon, W. Ho, Phys. Rev. B 60, R8525 (1999) Google Scholar
  13. F. Moresco, G. Meyer, K.-H. Rieder, Mod. Phys. Lett. B 13, 709 (1999) CrossRefGoogle Scholar
  14. J.I. Pascual, N. Lorente, in SPM beyond imaging, edited by P. Samori (Wiley-VHC, Berlin, 2005) Google Scholar
  15. N. Lorente, M. Persson, Faraday Discuss. 117, 277 (2000) CrossRefPubMedGoogle Scholar
  16. N. Lorente, J.I. Pascual, Phil. Trans. R. Soc. 362, 1227 (2004) CrossRefGoogle Scholar
  17. N. Lorente, R. Rurali, H. Tang, J. Phys.: Condens. Matter 17, S1049 (2005) Google Scholar
  18. Dacapo is freely downloadable from: Google Scholar
  19. B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59, 7413 (1999) CrossRefGoogle Scholar
  20. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990) CrossRefGoogle Scholar
  21. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) CrossRefGoogle Scholar
  22. C.J. Hirschmugl, G.P. Williams, F.M. Hoffmann, Y.T. Chabal, Phys. Rev. Lett. 65, 480 (1990) CrossRefPubMedGoogle Scholar
  23. It is interesting to note that the Cu(110) surface phonons are harder than the Ag(110) one, indicating a stronger Cu–Cu interaction than in the Ag case, because the mass difference does not account for the phonon top of band distance (21 meV for the longitudinal modes of Cu against 13.7 meV of Ag(110) [24]) Google Scholar
  24. G. Bracco, R. Tatarek, F. Tommasini, U. Linke, M. Persson, Phys. Rev. B 36, 2928 (1987) CrossRefGoogle Scholar
  25. S. Krause, C. Mariani, K.C. Prince, K. Horn, Surf. Sci. 138, 305 (1984) CrossRefGoogle Scholar
  26. L.D. Peterson, S.D. Kevan, J. Chem. Phys. 95, 8592 (1991) CrossRefGoogle Scholar
  27. J. Ahner, D. Mocuta, R.D. Ramsier, J.T. Yates, J. Chem. Phys. 105, 6553 (1996) CrossRefGoogle Scholar
  28. U. Burghaus, H. Conrad, Surf. Sci. 338, L869 (1995) Google Scholar
  29. P.J. Feibelman, B. Hammer, J.K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, J. Dumesic, J. Phys. Chem. B 105, 4018 (2001) CrossRefGoogle Scholar
  30. G. Kresse, A. Gil, P. Sautet, Phys. Rev. B 68, 073401 (2003) CrossRefGoogle Scholar
  31. R. Hoffman, Rev. Mod. Phys. 60, 601 (1988) CrossRefGoogle Scholar
  32. C. Blyholder, J. Phys. Chem. 68, 2772 (1964) Google Scholar
  33. Y. Morikawa, H. Ishii, K. Seki, Phys. Rev. B 69, 041403 (2004) CrossRefGoogle Scholar
  34. C.W. Bauschlicher, J. Chem. Phys. 101, 3250 (1994) CrossRefGoogle Scholar
  35. S.P. Lewis, A.M. Rappe, Phys. Rev. Lett. 77, 5241 (1996); S.P. Lewis, A.M. Rappe, J. Chem. Phys. 110, 4619 (1999) CrossRefPubMedGoogle Scholar
  36. S.P. Lewis, M.V. Pykhtin, E.J. Mele, A.M. Rappe, J. Chem. Phys. 108, 1157 (1998) CrossRefGoogle Scholar
  37. D.P. Woodruff, B.E. Hayden, K. Prince, A.M. Bradshaw, Surf. Sci. 123, 397 (1982) CrossRefGoogle Scholar
  38. R.A. Pelak, W. Ho, Surf. Sci. 321, L233 (1994) Google Scholar
  39. J. Braun, J. Weckesser, J. Ahner, D. Mocuta, J.T. Yates, Ch. Wöll, J. Chem. Phys. 108, 5161 (1998) CrossRefGoogle Scholar
  40. F. Hofmann, J.P. Toennies, Chem. Rev. 96, 1307 (1996) CrossRefPubMedGoogle Scholar
  41. M. Head-Gordon, J.C. Tully, J. Chem. Phys. 96, 3939 (1992) CrossRefGoogle Scholar
  42. M. Persson, Phil. Trans. R. Soc. 362, 1173 (2004) CrossRefGoogle Scholar
  43. B.G. Briner, M. Doering, H.-P. Rust, A.M. Bradshaw, Science 278, 257 (1997) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire Collisions, Agrégats, Réactivité, UMR 5589, IRSAMC, Université Paul SabatierToulouse Cedex 4France
  2. 2.Department of ElectronicsToyama UniversityToyamaJapan

Personalised recommendations