Microarray technology for the study of DNA damage by low-energy electrons

  • T. SolomunEmail author
  • C. Hultschig
  • E. Illenberger
Processes in Biomolecules


The damage induced to a model DNA (dT25) immobilized on a gold surface by the interaction of low-energy (1 eV) electrons was studied by means of microarray technology. High quality single-stranded DNA arrays were hybridized with a dye-marked complementary strand after irradiation with electrons and the normalized fluorescence data were used to quantify the DNA damage. The data clearly show the sensitivity of the method. A significant loss of genetic information was already observed at dose as low as few hundred of electrons per immobilized oligonucleotide. The results imply that single stranded DNA and RNA are appreciably more sensitive to radiation and the attack of secondary electrons during replication, transcription or translation stages than the current radiation damage models envisage.


Genetic Information Secondary Electron Quantum Computing Radiation Damage Damage Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) Google Scholar
  2. S. Ptasinska, S. Denifl, V. Grill, T.D. Märk, P. Scheier, S. Gohlke, M.A. Huels, E. Illenberger, Angew. Chem. Int. Ed. 44, 2 (2005) Google Scholar
  3. L. Sanche, Eur. Phys. J. D 35, 367 (2005) Google Scholar
  4. J.A. La Verne, S.M. Pimblott, Radiat. Res. 141, 208 (1995) PubMedGoogle Scholar
  5. T. Solomun, E. Illenberger, Chem. Phys. Lett. 396, 448 (2004) CrossRefGoogle Scholar
  6. H. A.-Carime, S. Gohlke, E. Illenberger, Phys. Rev. Lett. 92, 168103 (2004) PubMedGoogle Scholar
  7. S. Gohlke, H. Abdoul-Carime, E. Illenberger, Chem. Phys. Lett. 380, 595 (2003) CrossRefGoogle Scholar
  8. M.A. Huels, B. Boudaiffa, P. Cloutier, D. Hunting, L. Sanche, J. Am. Chem. Soc. 125, 4467 (2003) CrossRefPubMedGoogle Scholar
  9. G. Hanel, S. Denifl, P. Schreier, M. Probst, B. Farizon, M. Farizon, E. Illenberger, T.D. Märk, Phys. Rev. Lett. 90, 18104 (2003) CrossRefGoogle Scholar
  10. S. Ptasinska, S. Denifl, P. Scheier, T.D. Märk, J. Chem. Phys. 120, 8505 (2004) CrossRefPubMedGoogle Scholar
  11. V.G. Cheung, M. Morley, F. Aguilar, A. Massimi, R. Kucherlapati, G. Childs, Nature Genet. 21, 15 (1999) CrossRefPubMedGoogle Scholar
  12. A. Ulman, Chem. Rev. 96, 1533 (1996) CrossRefPubMedGoogle Scholar
  13. T.M. Herne, M.J. Tarlov, J. Am. Chem. Soc. 119, 8916 (1997) CrossRefGoogle Scholar
  14. D.Y. Petrovykh, H. Kimura-Suda, L.J. Whitman, M.J. Tarlov, J. Am. Chem. Soc. 125, 5219 (2003) PubMedGoogle Scholar
  15. R. Levicky, T.M. Herne, M.J. Tarlov, S.K. Satija, J. Am. Chem. Soc. 120, 9787 (1998) CrossRefGoogle Scholar
  16. M. Yang, H.C.M. Yau, H.L. Chan, Langmuir 14, 6121 (1998) CrossRefGoogle Scholar
  17. K. Wolf, Y. Gao, R.M. Georgiadis, Langmuir 20, 3357 (2004) PubMedGoogle Scholar
  18. A.B. Steel, R.L. Levicky, T.M. Herne, M.J. Tarlov, Biophys. J. 79, 975 (2000) PubMedGoogle Scholar
  19. H.A.-Carime, S. Gohlke, E. Fischbach, J. Scheike, E. Illenberger, Chem. Phys. Lett. 387, 267 (2004) CrossRefGoogle Scholar
  20. C. Olsen, P.A. Rowntree, J. Chem. Phys. 108, 3750 (1998) CrossRefGoogle Scholar
  21. J. Berdys, I. Anusiewicz, O. Skurski, J. Simons, J. Am. Chem. Soc. 126, 6441 (2004) CrossRefPubMedGoogle Scholar
  22. Obtained by “Fast PCR” program (version 3.3.39; Ruslan Kalendar; University of Helsinki, Finland) Google Scholar
  23. P.C. Dugal, M.A. Huels, L. Sanche, Radiat. Res. 151, 325 (1999) PubMedGoogle Scholar
  24. N. Gillard, M. Begusova, B. Castaing, M. Spotheim-Maurizot, Radiat. Res. 162, 566 (2004), and references therein PubMedGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Free University Berlin, Institute of ChemistryBerlinGermany
  2. 2.Department of Vertebrate GenomicsMax Planck Institute for Molecular GeneticsBerlinGermany

Personalised recommendations