Advertisement

Electron-driven processes in high-pressure plasmas

  • K. H. BeckerEmail author
  • N. M. Masoud
  • K. E. Martus
  • K. H. Schoenbach
Plasmas and High Pressure Measurements

Abstract.

This review article summarizes results from selected recent studies of collisional and radiative processes initiated and driven by low-energy electron interactions with atoms and molecules in high-pressure plasmas. A special emphasis of the article is on spectroscopic studies of plasmas used as sources for non-coherent vacuum ultraviolet radiation such as rare excimer emissions and atomic and molecular emissions from plasmas in admixtures of rare gases and the molecular gases H2 and N2. An attempt is made to correlate the various observed emission features and their dependence on the plasma operating parameters (pressure, power, gas mixture, mode of excitation, etc.) to the underlying microscopic atomic and molecular processes.

Keywords

Neural Network Operating Parameter Quantum Computing Ultraviolet Radiation Spectroscopic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. Non-Equilibrium Air Plasmas at Atmospheric Pressure, edited by K. Becker, U. Kogelschatz, K. Schoenbach, R. Barker (IOP Publ., Bristol, UK, 2005), Chap. 9 Google Scholar
  2. Y. Raizer, Gas Discharge Physics (Springer Verlag, Heidelberg, 1991) Google Scholar
  3. E.E. Kunhardt, IEEE Trans. Plasma Sci. 28, 1 (2000) CrossRefGoogle Scholar
  4. K. Becker, P. Kurunczi, K.H. Schoenbach, Phys. Plasmas 9, 2399 (2002) CrossRefGoogle Scholar
  5. D. Dietz, S. Wieman, T. Chou, T.L. Su, O. Mogzina, C. Christodoulatos, G. Korfiatis, P.J. Ricatto, E. Houston, K. Becker, 56th Gaseous Electronics Conference, San Francisco, CA (2003); D. Dietz, S. Wieman, T. Chou, T.L. Su, O. Mogzina, C. Christodoulatos, G. Korfiatis, P.J. Ricatto, E. Houston, K. Becker, Bull. Am. Phys. Soc. 48, 64 (2003) Google Scholar
  6. D. Dietz, H. Ghezel-Ayagh, J. Hunt, A. Belkind, K. Becker, A. Nickens, 31st IEEE ICOPS, Baltimore, MD (2004), p. 413 Google Scholar
  7. H. Qiu, K. Martus, W.Y. Lee, K. Becker, Int. J. Mass Spectrom. 233, 19 (2004) CrossRefGoogle Scholar
  8. A. Koutsospyros, S.-M. Yin, C. Christodoulatos, K. Becker, Int. J. Mass Spectrom. 233, 305 (2004) Google Scholar
  9. N.S. Panikov, S. Paduraru, R. Crowe, P.J. Ricatto, C. Christodoulatos, K. Becker, IEEE Trans. Plasma Sci. 30, 1424 (2002) CrossRefGoogle Scholar
  10. L. Moskwinski, P.J. Ricatto, N. Abramzon, K. Becker, G. Korfiatis, C. Christodoulatos, in Proc. IV. Symposium on Applications of Plasma Processes (SAPP), Jasna, Slovakia (2003), p. 17 Google Scholar
  11. K.H. Schoenbach, R. Verhappen, T. Tessnow, F.E. Peterkin, W. Byszewski, Appl. Phys. Lett. 68, 13 (1996) CrossRefGoogle Scholar
  12. A.D. White, J. Appl. Phys. 30, 711 (1959) CrossRefGoogle Scholar
  13. K.H. Schoenbach, A. El-Habachi, W. Shi, M. Ciocca, Plasma Sources Sci. Technol. 6, 468 (1997) Google Scholar
  14. A. Fiala, L.C. Pitchford, J.P. Boeuf, Contr. Papers, XXII Conf. on Phenomena in Ionized Gases, Hoboken, NJ, 1995, p. 191 Google Scholar
  15. D.J. Sturges, H.J. Oskam, J. Appl. Phys. 35, 2887 (1964) Google Scholar
  16. H. Helm, Z. Naturforsch. 27a, 1812 (1972) Google Scholar
  17. J.P. Boeuf, L.C. Pitchford, K.H. Schoenbach, Appl. Phys. Lett. 86, 71501 (2005) Google Scholar
  18. T. Paul, R. Hartmann, J. Heberlein, K.H. Schoenbach, W. Shi, R. Stark, Proc. International Thermal Spray Conference, edited by E. Lugscheider, ASM International, Materials Park, Ohio, pp. 793-796, 2002 Google Scholar
  19. Abdel-Aleam H. Mohamed, R. Block, K.H. Schoenbach, IEEE Trans. Plasma Sci. 30, 182 (2002) Google Scholar
  20. R.H. Stark, K.H. Schoenbach, J. Appl. Phys. 89, 3568 (2001) CrossRefGoogle Scholar
  21. E.E. Kunhardt, K. Becker, US Patents 5872426, 6005349, and 6147452. Google Scholar
  22. S. Okazaki, M. Kogoma, M. Uehara, Y. Kimura, J. Phys. D 26, 889 (1993) CrossRefGoogle Scholar
  23. E.E. Kunhardt, K. Becker, L. Amorer, Proc. 12th International Conference on Gas Discharges and their Applications, Greifswald, Germany, 1997, p. I-374 Google Scholar
  24. E.E. Kunhardt, K. Becker, L. Amorer, L. Palatini, Bull. Am. Phys. Soc. 42, 1716 (1997) Google Scholar
  25. L.E. Amorer, Ph.D. thesis, Stevens Institute of Technology (1999), unpublished Google Scholar
  26. E.E. Kunhardt, private communication Google Scholar
  27. B. Eliasson, U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 309 (1991); see also Non-Equilibrium Air Plasmas at Atmospheric Pressure, edited by K. Becker, U. Kogelschatz, K. Schoenbach, R. Barker (IOP Publ., Bristol, UK, 2005), Chap. 6 Google Scholar
  28. M. Laroussi, in Proc. IEEE Int. Conf. Plasma Sci., Monterey, CA (1999), p. 203 Google Scholar
  29. N. Masoud, K. Martus, K. Becker, Int. J. Mass Spectrom. 233, 395 (2004) CrossRefGoogle Scholar
  30. N. Masoud, K. Martus, M. Figus, K. Becker, Contr. Plasma Phys. 45, 30 (2005) Google Scholar
  31. N. Masoud, K. Martus, K. Becker, J. Phys. D 38, 1674 (2005) CrossRefGoogle Scholar
  32. P. Kurunczi, J. Lopez, H. Shah, K. Becker, Int. J. Mass Spectrom. 205, 277 (2001) CrossRefGoogle Scholar
  33. P. Kurunczi, K.E. Martus, K. Becker, Int. J. Mass Spectrom. 223/224, 37 (2003) Google Scholar
  34. P. Kurunczi, M. Moshely, K.H. Schoenbach, K. Becker, in Spectroscopy of Non-Equilibrium Plasmas at Elevated Temperatures, edited by V.N. Ochkin, SPIE Proceedings, Vol. 4460 (SPIE Press, Bellingham, WA, USA), p. 239 Google Scholar
  35. J.K. Rice, A.W. Johnson, J. Chem. Phys. 63, 5235 (1975) CrossRefGoogle Scholar
  36. J.L. Delcroix, C.M. Ferreira, A. Ricard, “Metastable Atoms in Ionized Gases”, in Principles of Gas Lasers, editde by G. Belufi (Wiley Publ., New York, 1976) Google Scholar
  37. M. Moselhy, R.H. Stark, K.H. Schoenbach, U. Kogelschatz, Appl. Phys. Lett. 78, 880 (2001) Google Scholar
  38. M. Moselhy, I. Petzenhauser, K. Frank, K.H. Schoenbach, J. Phys. D: Appl. Phys. 36, 2922 (2003) CrossRefGoogle Scholar
  39. A. El-Habachi, K.H. Schoenbach, Appl. Phys. Lett. 73, 885 (1998) CrossRefGoogle Scholar
  40. K.H. Schoenbach, A. El-Habachi, M.M. Moselhy, W. Shi, R.H. Stark, Phys. Plasmas 7, 2186 (2000) CrossRefGoogle Scholar
  41. A. El-Habachi, W. Shi, M. Moselhy, R.H. Stark, K.H. Schoenbach, J. Appl. Phys. 88, 3220 (2000) CrossRefGoogle Scholar
  42. A. El-Habachi, K.H. Schoenbach, Appl. Phys. Lett. 72, 22 (1998). CrossRefGoogle Scholar
  43. K.H. Schoenbach, M. Moselhy, W. Shi, R. Bentley, Vac. Sci. Technol. A 21, 1260 (2003) Google Scholar
  44. M. Moselhy, W. Shi, R. H. Stark, K.H. Schoenbach, IEEE Trans. Plasma Science 30, 198 (2002) CrossRefGoogle Scholar
  45. M. Moselhy, W. Shi, R.H. Stark, K.H. Schoenbach, Appl. Phys. Lett. 79, 1240 (2001) CrossRefGoogle Scholar
  46. C.O. Laux, C.H. Kruger, J. Quant. Spectroscop. Radiat. Transfer 48, 9 (1992) CrossRefGoogle Scholar
  47. T. Nozaki, Y. Unno, Y. Miyazaki, K. Okazaki, 15th International Symposium on Plasma Chemistry, Orleans, France, (2001), Vol. 1, pp. 77-83 Google Scholar
  48. G. Herzberg, Molecular Spectra and Molecular Structure, (Van Nostrand-Reinhold, New York, 1950), Vol. 1 Google Scholar
  49. S. Cheskis, A. Kachanov, M. Chenevier, F. Stoeckel, Appl. Phys. B 64, 713 (1997) CrossRefGoogle Scholar
  50. P. Kurunczi, N. Abramzon, M. Figus, K. Becker, Acta Phys. Slov. 54, 115 (2004) Google Scholar
  51. S.V. Pancheshnyi, S.M. Starikovkaia, A.Yu. Starikovskii, Chem. Phys. Lett. 294, 523 (1998) Google Scholar
  52. P.G. Kistemaker, A.E. de Vries, Chem. Phys. 7, 371 (1975) CrossRefGoogle Scholar
  53. E. Stoffels, A.J. Flikweert, W.W. Stoffels, G.M.W. Kroesen, Plasma Sources Sci. Technol. 11, 383 (2002) Google Scholar
  54. V.M. Donnelly, M.V. Malyshev, Appl. Phys. Lett. 77, 2467 (2000) CrossRefGoogle Scholar
  55. A. Lofthus, P. Krupenie, J. Phys. Chem. Ref Data 6, 1 (1977) Google Scholar
  56. G. Hartmann, P.C. Johnson, J. Phys. B: At. Mol. Phys. 11, 1597 (1978) CrossRefGoogle Scholar
  57. R.W. Nicholls, J. Res. Nat. Bur. Stand. A. Phys. Chem. 65A, 451 (1961) Google Scholar
  58. N. Nur, J.L. Hernandez, N. Bonifaci, A. Dent, A.A. Belevtsev, Conference Record of the ICDL 96, 12th International Conference of Conduction and Breakdown in Dielectric Liquid, Roma, Italy, July 15-19 (1996) Google Scholar
  59. I.I. Sobelman, Atomic Spectra and Radiative Transitions (Springer Verlag, Heidelberg, 1979) Google Scholar
  60. K. Bartschat, D.H. Madison, J. Phys. B: At. Mol. Phys. 20, 5839 (1987) CrossRefGoogle Scholar
  61. I. Kanik, J.M. Ajello, G.K. James, J. Phys B: At. Mol. Opt. Phys. 29, 2355 (1996) Google Scholar
  62. P.K. Leichner, Phys. Rev. A 8, 815 (1973) CrossRefGoogle Scholar
  63. W. Krotz, A. Ulrich, B. Busch, G. Ribitzki, J. Wieser, Appl. Phys. Lett. 55, 2265 (1989) Google Scholar
  64. P. Kurunczi, H. Shah, K. Becker, J. Phys. B: At. Mol. Opt. Phys. 32, L651 (1999) Google Scholar
  65. B. Eliasson, M. Hirth, U. Kogelschatz, J. Phys. D: Appl. Phys. 20, 1421 (1987) CrossRefGoogle Scholar
  66. T. Grieget, H.W. Drotleff, J.W. Hammer, K. Petkau, J. Chem. Phys. 93, 4581 (1990) CrossRefGoogle Scholar
  67. H. Langhoff, Opt. Comm. 68, 31 (1988) CrossRefGoogle Scholar
  68. A.K. Amirov, O.V. Korshounov, V.F Chinnov, J. Phys. B 27, 1753 (1994) Google Scholar
  69. See e.g. M. McCusker, “The Rare Gas Excimers”, in Excimer Lasers, edited by C.K. Rhodes (Springer-Verlag, Heidelberg, 1984) and references therein to earlier publications; as discussed in this article, the radiative lifetime of the Ne2*(3Σu) excimer state has been measured by several authors who report values ranging from 5.1 μs to 12 μs with an average value of 8.9 μs which has an estimated uncertainty of no less than about 30% Google Scholar
  70. M.R. Wertheimer, A.C. Fozza, A. Hollander, Nucl. Instrum. Meth. Phys. Res. B 151, 65 (1999) Google Scholar
  71. N. Merbahi, N. Sewraj, F. Marchal, Y. Salamero, P. Millet, J. Phys. D: Appl. Phys. 37, 1664 (2004) Google Scholar
  72. A. El-Dakrouri, J. Yan, M.C. Gupta, M. Laroussi, Y. Badr, J. Phys. D: Appl. Phys. 35, L109 (2002) Google Scholar
  73. Ch. A. Brau, “Rare Gas Halogen Excimers”, in Excimer Lasers, edited by C.K. Rhodes (Springer Verlag, Berlin, Heidelberg, New York, 1984) Google Scholar
  74. J. Wieser, M. Salvermoser, L.H Shaw, D. E. Murnick, H. Dahi, J. Phys. B: At. Mol Opt Phys. 31, 4589 (1998) Google Scholar
  75. P. Kurunczi, Ph.D. thesis, Stevens Institute of Technology (2003), unpublished Google Scholar
  76. W.T. Rawlins, L.G. Piper, SPIE 279, 58 (1981) Google Scholar
  77. L.G. Piper, M.A. Clyne, P.B. Monkhouse, Chem. Phys. 51, 107 (1980) CrossRefGoogle Scholar
  78. H. Umemoto, N. Terada, K. Tanaka, S. Oguro, Phys. Chem. Chem. Phys. 2, 3425 (2000) CrossRefGoogle Scholar
  79. B. Krylov, A. Morozov, G. Gerasimov, A. Arnesen, R. Hallin, F. Heijkenskjöld, J. Phys. B: At. Mol. Opt. Phys. 35, 4257 (2002) CrossRefGoogle Scholar
  80. A. Rahman, A.P. Yalin, V. Surla, O. Stan, K. Hoshimiya, Z. Yu, E. Littlefield, G.J. Collins, Plasma Sources Sci. Technol. 13, 537 (2004) CrossRefGoogle Scholar
  81. C.M. Ferreira, E. Tatarova, V. Guerra, B.F. Gordiets, J. Henriques, F.M. Dias, M. Pinheiro, IEEE Tran. Plasma Sci. 31, 645 (2003) CrossRefGoogle Scholar
  82. T. Kimura, K. Akatsuka, K. Ohe, J. Phys. D: Appl. Phys. 27, 1664 (1994) CrossRefGoogle Scholar
  83. See e.g. K. Becker, M. Schmidt, “Plasma Chemistry” in Encyclopedia of Chemical Physics and Physical Chemistry, edited by J.H. Moore, N.D. Spencer (Institute of Physics Publishing, London, 2002), p. 2491, and references therein to earlier publications Google Scholar
  84. A. Zecca, G.P. Karwasz, R.S. Brusa, Riv. Nuovo Cim. 19, 1 (1996) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • K. H. Becker
    • 1
    • 2
    Email author
  • N. M. Masoud
    • 1
  • K. E. Martus
    • 3
  • K. H. Schoenbach
    • 4
    • 5
  1. 1.Dept. of Physics and Engineering Physics, Stevens Institute of TechnologyHobokenUSA
  2. 2.Center for Environmental Systems, Stevens Institute of TechnologyHobokenUSA
  3. 3.Dept. of Chemistry and Physics, William Paterson University of New JerseyWayneUSA
  4. 4.Dept. of Electrical and Computer Engineering, Old Dominion UniversityNorfolkUSA
  5. 5.Center for Biolelectrics, Old Dominion UniversityNorfolkUSA

Personalised recommendations