Advertisement

Elastic scattering of electrons from tetrahydrofuran molecule

  • A. R. Milosavljevic
  • A. Giuliani
  • D. Sevic
  • M.-J. Hubin-Franskin
  • B. P. MarinkovicEmail author
Processes in Biomolecules

Abstract.

Absolute differential cross-sections (DCSs) for elastic scattering of electrons from the DNA backbone sugarlike analogue tetrahydrofuran (THF) molecule were determined using a crossed beam measurements for incident energies from 20 eV to 300 eV and scattering angles from 10o to 110o. Using the relative-flow technique, elastic DCSs for THF relative to nitrogen have been obtained at incident energies of 20, 30, 40, 50 and 60 eV. In the energy region above 30 eV, the DCSs were measured independently as a function of both incident electron energy and scattering angle. Therefore, this set of relative DCSs has been calibrated to the absolute scale via normalization to a single point in the overlapping region. Additionally, both vibrational and electronic energy loss spectra for THF are presented and influence of energy resolution to the obtained DCSs is discussed.

Keywords

Neural Network Energy Loss Electron Energy Nonlinear Dynamics Tetrahydrofuran 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) CrossRefPubMedGoogle Scholar
  2. M. Lepage, S. Letarte, M. Michaud, F. Motte-Tollet, M.-J. Hubin-Franskin, D. Roy, L. Sanche, J. Chem. Phys. 109, 5980 (1998) CrossRefGoogle Scholar
  3. D. Antic, L. Parenteau, M. Lepage, L. Sanche, J. Phys. Chem. B 103, 6611 (1999) CrossRefGoogle Scholar
  4. D. Antic, L. Parenteau, L. Sanche, J. Phys. Chem. B 104, 4711 (2000) Google Scholar
  5. S.-P. Breton, M. Michaud, C. Jäggle, P. Swiderek, L. Sanche, J. Chem. Phys. 121, 11240 (2004) CrossRefPubMedGoogle Scholar
  6. A. Roldán, J.M. Pérez, A. Williart, F. Blanco, G. Garcia, J. Appl. Phys. 95(10), 5865 (2004) CrossRefGoogle Scholar
  7. U. Titt, V. Dangendorf, B. Grosswendt, H. Schuhmacher, Nucl. Instr. Meth. A 477, 536 (2002) Google Scholar
  8. F. Motte-Tollet, M.J. Hubin-Franskin, J.E. Collin, J. Chem. Phys. 97(10), 7314 (1992); F. Motte-Tollet, J. Heinesch, J.M. Gingell, N.J. Mason, J. Chem. Phys. 106, 5990 (1997) CrossRefGoogle Scholar
  9. S. Trajmar, D.F. Register, A. Chutjian, Phys. Rep. 97, 219 (1983) CrossRefGoogle Scholar
  10. J.C. Nickel, P.W. Zetner, G. Shen, S. Trajmar, J. Phys. E 22, 730 (1989) Google Scholar
  11. J.C. Nickel, C. Mott, I. Kanik, D.C. McCollum, J. Phys. B: At. Mol. Opt. Phys. 21, 1867 (1988) Google Scholar
  12. A.R. Milosavljević, S. Telega, D. Šević, J.E. Sienkiewicz, B.P. Marinković, Eur. Phys. J. D 29, 329 (2004) Google Scholar
  13. A.R. Milosavljević, V.I. Kelemen, D.M. Filipović, S.M. Kazakov, V. Pejčev, D. Šević, B.P. Marinković, J. Phys. B: At. Mol. Opt. Phys. 38, 2195 (2005) Google Scholar
  14. H. Cho, R.P. McEachran, H. Tanaka, S.J. Buckman, J. Phys. B: At. Mol. Opt. Phys. 37, 4639 (2004) Google Scholar
  15. A. Danjo, J. Phys. B: At. Mol. Opt. Phys. 21, 3759 (1988) CrossRefGoogle Scholar
  16. D. Cvejanović, D.A. Crowe, J. Phys. B: At. Mol. Opt. Phys. 30, 2873 (1997) CrossRefGoogle Scholar
  17. L. Boesten, H. Tanaka, J. Phys. B: At. Mol. Opt. Phys. 24, 821 (1991) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • A. R. Milosavljevic
    • 1
  • A. Giuliani
    • 2
  • D. Sevic
    • 1
  • M.-J. Hubin-Franskin
    • 2
  • B. P. Marinkovic
    • 1
    Email author
  1. 1.Institute of PhysicsBelgradeSerbia and Montenegro
  2. 2.Laboratoire de Spectroscopie d’Électrons Diffusés, Université de Liège, Institut de ChimieLiègeBelgium

Personalised recommendations