Advertisement

Electron-induced modifications in thin solid films of nitromethane-D3 with hydrocarbon admixture

  • P. SwiderekEmail author
Surface Processes

Abstract.

The effect of electron exposure at an incident energy of 10.5 eV on solid molecular multilayer films containing nitromethane-D3 has been studied by high-resolution electron-energy-loss (HREEL) spectroscopy. Nitromethane-D3 was mixed with varying amounts of hexane or heptane to investigate whether the hydrocarbon component or, more specifically, resonant H- production which is known to occur at electron energies around 10 eV plays a role in electron-induced modifications of the nitro group. While bands related to vibrations of the nitro group clearly diminish under exposure, the rate of this process does not depend on the amount of the admixed hydrocarbon component. Consequently, the hydrocarbon component and thus also the H- producing resonance around 10 eV do not determine the rate of modification of nitromethane-D3 at the investigated energy.

Keywords

Spectroscopy Neural Network State Physics Hexane Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Gölzhäuser, W. Grunze, Appl. Phys. Lett. 75, 2401 (1999) CrossRefGoogle Scholar
  2. W. Eck, V. Stadler, W. Geyer, M. Zharnikov, A. Gölzhäuser, M. Grunze, Adv. Mat. 12, 805 (2000) CrossRefGoogle Scholar
  3. Y.-H. La, H.J. Kim, I.S. Maeng, Y. Jin. Jung, J.W. Park, Langmuir 18, 301 (2002) CrossRefGoogle Scholar
  4. J.W. Jung, Y.-H. La, H.J. Kim, T.-H. Kang, K. Ihm, K.-J. Kim, B. Kim, J.W. Park, Langmuir 19, 4512 (2003) CrossRefGoogle Scholar
  5. C.O. Kim, J.W. Jung, M. Kim, T.-H. Kang, K. Ihm, K.-J. Kim, B. Kim, J.W. Park, H.-W. Nam, K-.J. Hwang, Langmuir 19, 4504 (2003) CrossRefGoogle Scholar
  6. W. Sailer, A. Pelc, S. Matejcik, E. Illenberger, P. Scheier, T.D. Märk, J. Chem. Phys. 117, 7989 (2002) CrossRefGoogle Scholar
  7. P. Rowntree, L. Parenteau, L. Sanche, J. Phys. Chem. 95, 4902 (1991) CrossRefGoogle Scholar
  8. H. Ibach, Electron Energy Loss Spectrometers (Springer, Berlin, 1991) Google Scholar
  9. P. Swiderek, S. Schürfeld, H. Winterling, Ber. Bunsenges. Phys. Chem. 101, 1517 (1997) Google Scholar
  10. H. Winterling, H. Haberkern, P. Swiderek, Phys. Chem. Chem. Phys. 3, 4592 (2001) CrossRefGoogle Scholar
  11. B. Göötz, H. Winterling, P. Swiderek, J. Electron Spectrosc. 105, 1 (1999) CrossRefGoogle Scholar
  12. B.N.J. Persson, Sol. State Commun. 24, 573 (1977) CrossRefGoogle Scholar
  13. G. Ertl, J. Küppers, Low Energy Electrons and Surface Chemistry (VCH, Weinheim, 1985) Google Scholar
  14. D. Gorse, D. Cavagnat, M. Pesquer, C. Lapouge, J. Phys. Chem. 97, 4262 (1993) CrossRefGoogle Scholar
  15. NIST webbook: http://webbook.nist.gov/chemistry/ Google Scholar
  16. A.D. Bass, M. Lezius, P. Ayotte, L. Parenteau, P. Cloutier, L. Sanche, J. Phys. B: At. Mol. Opt. Phys. 30, 3527 (1997) CrossRefGoogle Scholar
  17. C. Olsen, P.A. Rowntree, J. Chem. Phys. 108, 3750 (1998) CrossRefGoogle Scholar
  18. C. Jäggle, A. Gölzhäuser, P. Swiderek (unpublished) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Universität BremenBremenGermany

Personalised recommendations