Adsorption of hydrogen on normal and pentaheptite single wall carbon nanotubes

Quantum Dots, Wires and Nanotubes

Abstract.

Density functional calculations of the physisorption of molecular hydrogen and the dissociative atomic chemisorption on the external surface of hexagonal and pentaheptite carbon nanotubes, have been carried out. Physisorption binding energies are near 100 meV/molecule and are similar on metallic and semiconducting nanotubes. Full coverage of the nanotube with one molecule per graphitic hexagon decreases the binding energy per molecule. Chemisorption binding energies per H atom are larger on pentaheptites than on hexagonal carbon nanotubes. The molecular physisorption and dissociative chemisorption states on pentaheptites have very similar total energies (some chemisorbed states are even slightly more stable than the physisorbed states), while on hexagonal carbon nanotubes molecular physisorption is more stable than dissociative chemisorption. However, a substantial energy barrier has to be overcome to go from physisorption to dissociative chemisorption in both types of nanotubes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Züttel, Mat. Today 9, 24 (2003) Google Scholar
  2. S. Orimo, A. Züttel, L. Schlapbach, G. Majer, T. Fukunaga, H. Fujii, J. Appl. Cryst. 356, 716 (2003) Google Scholar
  3. C.M. Brown, T. Yildirim, D.A. Newmann, M.J. Heben, T. Gennett, A.C. Dillon, J.L. Alleman, J.E. Fischer, Chem. Phys. Lett. 329, 311 (2000) Google Scholar
  4. B.K. Pradhan, G.U. Sumanasekera, K.W. Adu, H.E. Romero, K.A. Williams, P.C. Eklund, Physica B 323, 115 (2002) Google Scholar
  5. D.G. Narehood, J.V. Pearce, P.C. Eklund, P.E. Sokol, R.E. Lechner, J. Pieper, J.R.D. Copley, J.C. Cook, Phys. Rev. B 67, 205409 (2003) Google Scholar
  6. J.S. Arellano, L.M. Molina, A. Rubio, M.J. López, J.A. Alonso, J. Chem. Phys. 117, 2281 (2002) Google Scholar
  7. J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology 13, 195 (2002) Google Scholar
  8. J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, S. Yip, J. Chem. Phys. 119, 2376 (2003) Google Scholar
  9. E.J. Duplock, M. Scheffler, J.D. Lindan, Phys. Rev. Lett. 92, 225502 (2004) Google Scholar
  10. V.H. Crespi, L.X. Benedict, M.L. Cohen, S.G. Louie, Phys. Rev. B 53, R13303 (1996) Google Scholar
  11. J.W. Mintmire, C.T. White, in Carbon Nanotubes: Preparation and Properties, edited by T.W. Ebbesen (CRC, Boca Raton, 1997), p. 191 Google Scholar
  12. B. Hammer, L.B. Hansen, J.N. Nørskov, Phys. Rev. B 59, 7413 (1999) Google Scholar
  13. Y. Okamoto, Y. Miyamoto, J. Phys. Chem. B 105, 3470 (2001) Google Scholar
  14. J.S. Arellano, L.M. Molina, A. Rubio, J.A. Alonso, J. Chem. Phys. 112, 8114 (2000) Google Scholar
  15. P. Diep, J.K. Johnson, J. Chem. Phys. 112, 4465 (2000) Google Scholar
  16. V. Barone, J. Heyd, G.E. Scuseria, J. Chem. Phys. 120, 7169 (2004) Google Scholar
  17. E.-C. Lee, Y.-S. Kim, Y.-G. Jin, K.J. Chang, Phys. Rev. B 66, 73415 (2002) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Departamento de Física TeóricaUniversidad de ValladolidValladolidSpain
  2. 2.Donostia International Physics Center (DIPC)San SebastiánSpain

Personalised recommendations