Advertisement

Electron attachment to strongly polar clusters

Formamide molecule and clusters
  • M. Seydou
  • A. Modelli
  • B. Lucas
  • K. Konate
  • C. Desfrançois
  • J. P. SchermannEmail author
Fundamental Processes in the Gas Phase

Abstract.

Electron localization is studied in formamide cluster anions. The isolated formamide molecule has a large dipole moment and its clusters can give birth to multipole-bound anions as well as valence anions. The vertical valence electron affinity of the isolated molecule is determined by electron transmission spectroscopy. The anion formation process is studied as a function of cluster size with Rydberg electron transfer spectroscopy. DFT calculations of the neutral and negatively-charged cluster structures show that the anion excess electron localizes on a single molecule. The adiabatic valence electron affinity of isolated formamide is deduced from the observation of the cluster size threshold for valence attachment.

Keywords

Formamide Cluster Size Anion Formation Electron Localization Excess Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Fermi, E. Teller, Phys. Rev. 72, 399 (1947) CrossRefGoogle Scholar
  2. P. Skurski, J. Simons, J. Chem. Phys. 112, 6562 (2000) CrossRefGoogle Scholar
  3. H. Haberland, H. Ludewigt, C. Schindler, D.R. Worsnop, Phys. Rev. A 36, 967 (1987) CrossRefPubMedGoogle Scholar
  4. J. Kalcher, Theoretical prospects of negative ions (Research SignPost, Trivandrum, India, 2002) Google Scholar
  5. J.R.R. Verlet, A.E. Bragg, A. Kammrath, O. Chesnowsky, D.M. Neumark, Science 307, 93 (2005) CrossRefPubMedGoogle Scholar
  6. E. Illenberger, Chem. Rev. 92, 1589 (1992) CrossRefGoogle Scholar
  7. H. Abdoul-Carime, J.P. Schermann, C. Desfrançois, Few-Body Systems 31, 183 (2002) CrossRefGoogle Scholar
  8. H.M. Lee, S.B. Suh, K.S. Kim, J. Chem. Phys. 118, 9981 (2003) CrossRefGoogle Scholar
  9. J.W. Shin, N.I. Hammer, J.M. Headrick, M.A. Johnson, Chem. Phys. Lett. 399, 349 (2004) CrossRefGoogle Scholar
  10. H. Haberland, C. Schindler, H.G. Worsnop, Ber. Bunsenges. Phys. Chem. 88, 270 (1984) Google Scholar
  11. J.V. Coe, G.H. Lee, J.G. Eaton, S.T. Arnold, H.W. Sarkas, K.H. Bowen, C. Ludewigt, H. Haberland, D.R. Worsnop, J. Chem. Phys. 92, 3980 (1990) CrossRefGoogle Scholar
  12. C. Desfrançois, A. Lisfi, J.P. Schermann, Z. Phys. D 24, 297 (1992) CrossRefGoogle Scholar
  13. G.J. Schulz, Rev. Mod. Phys. 45, 378 (1973) CrossRefGoogle Scholar
  14. L. Sanche, G.J. Schulz, Phys. Rev. A 5, 1672 (1972) CrossRefGoogle Scholar
  15. K. Harth, M.-W. Rüf, H. Hotop, Z. Phys. D 14, 149 (1989) CrossRefGoogle Scholar
  16. C. Desfrançois, V. Périquet, S. Carles, J.P. Schermann, L. Adamowicz, Chem. Phys. 239, 475 (1998) CrossRefGoogle Scholar
  17. B. Lucas, F. Lecomte, B. Reimann, H.D. Barth, G. Grégoire, Y. Bouteiller, J.P. Schermann, C. Desfrançois, Phys. Chem. Chem. Phys. 6, 2600 (2004) CrossRefGoogle Scholar
  18. C.C. Wu, J.C. Jiang, I. Hahndorf, C. Chaudhuri, Y.T. Lee, H.C. Chang, J. Phys. Chem. A 104, 9556 (2000) CrossRefGoogle Scholar
  19. T. Maeyama, N. Mikami, Phys. Chem. Chem. Phys. 6, 1137 (2003) Google Scholar
  20. A. Modelli, D. Jones, G. Distefano, Chem. Phys. Lett. 86, 434 (1982) CrossRefGoogle Scholar
  21. A.R. Johnston, P.D. Burrow, J. Electron. Spectrosc. Relat. Phenom. 25, 119 (1982) CrossRefGoogle Scholar
  22. P.D. Burrow, J.A. Michejda, Chem. phys. Lett. 42, 223 (1976) CrossRefGoogle Scholar
  23. A. Modelli, G. Distefano, D. Jones, Chem. Phys. 73, 395 (1982) CrossRefGoogle Scholar
  24. A. Modelli, H.D. Martin, J. Phys. Chem. A 106, 7271 (2002) CrossRefGoogle Scholar
  25. F.B. Dunning, J. Phys. B 28, 1645 (1995) Google Scholar
  26. M.J. Frisch, G.W. Trucks, H.B. Schlegel, H.B. Scuseria, G.E. Robb, M.A. Cheeseman, J.R. Zakrzewski, V.G. Montgomery, J.A. Stratmann, R.E. Burant, J.C. Dapprich, S. Millam, J.M. Daniels, A.D. Kudin, K.N. Strain, M.O. Farkas, O. Tomasi, J. Barone, V. Cossi, M. Cammi, R. Mennucci, B. Pomelli, C. Adamo, C. Clifford, S. Ochterski, J. Petersson, G.A. Ayala, Q.P.Y. Cui, K. Morokuma, K. Malick, D.K. Rabuck, A.D. Raghavachari, K. Foresman, J.B. Cioslowski, J. Ortiz, J.V. Stefanov, B.B. Liu, G. Liashenko, A. Piskorz, P. Komaromi, I. Gomperts, R. Martin, R.L. Fox, D.J. Keith, T. Al-Laham, M.A. Peng, C.Y. Nanayakkara, A. Gonzalez, C. Challacombe, M. Gill, P.M.W. Johnson, B. Chen, W. Wong, M.W. Andres, J.L. Head-Gordon, E.S. Replogle, J.A. Popple, Revision A6 ed. (Pittsburg, PA, 1998) Google Scholar
  27. C. Desfrançois, Y. Bouteiller, J.P. Schermann, D. Radisic, S.T. Stockes, K.H. Bowen, N.I. Hammer, R.N. Compton, Phys. Rev. Lett. 92, 083003 (2004) CrossRefPubMedGoogle Scholar
  28. A. Modelli, Trends Chem. Phys. 6, 57 (1997) Google Scholar
  29. D. Chen, G.A. Gallup, J. Chem. Phys. 93, 8893 (1990) CrossRefGoogle Scholar
  30. S.S. Staley, J.T. Strnad, J. Phys. Chem. 98, 161 (1994) CrossRefGoogle Scholar
  31. J.S. Chao, M.F. Falcetta, K.D. Jordan, J. Chem. Phys. 93, 1125 (1990) CrossRefGoogle Scholar
  32. A. Modelli, Phys. Chem. Chem. Phys. 5, 2923 (2003) CrossRefGoogle Scholar
  33. A. Modelli, B. Hajgato, J.F. Nixon, L. Nyulaszi, J. Phys. Chem. A 108, 7440 (2004) CrossRefGoogle Scholar
  34. N. Heinrich, W. Koch, G. Frenking, Chem. Phys. Lett. 124, 20 (1986) CrossRefGoogle Scholar
  35. A. Pelc, W. Sailer, P. Scheier, M. Probst, N.J. Mason, E. Illenberger, T.D. Märk, Chem. Phys. Lett. 361, 277 (2002) CrossRefGoogle Scholar
  36. J.W. Shin, N.I. Hammer, M.A. Johnson, H. Schneider, A. Glob, J.M. Weber, J. Phys. Chem. A (2005) Google Scholar
  37. V. Périquet, A. Moreau, S. Carles, J.P. Schermann, C. Desfrançois, J. Electr. Spectr. Rel. Phenom. 106, 141 (2000) CrossRefGoogle Scholar
  38. K.T. No, O.Y. Kwon, S.Y. Kim, M.S. Jhon, H.A. Scheraga, J. Phys. Chem. 99, 3478 (1995) CrossRefGoogle Scholar
  39. R. Ludwig, F. Weinhold, T.C. Farrar, J. Chem. Phys. 103, 3636 (1995) CrossRefGoogle Scholar
  40. M.C. Bellissent-Funel, S. Nasr, L. Bosio, J. Chem. Phys. 106, 7913 (1997) CrossRefGoogle Scholar
  41. C.N. Tam, P. Bour, J. Eckert, F.R. Trouw, J. Phys. Chem. A 101, 5877 (1997) CrossRefGoogle Scholar
  42. K.P. Sagarik, R. Ahlrichs, J. Phys. Chem. 86, 5117 (1987) CrossRefGoogle Scholar
  43. S. Suhai, J. Chem. Phys. 103, 7030 (1995) CrossRefGoogle Scholar
  44. S. Suhai, J. Phys. Chem. 100, 3950 (1996) CrossRefGoogle Scholar
  45. E. Cabaleiro-Lago, M.A. Rios, J. Chem. Phys. 110, 6782 (1999) CrossRefGoogle Scholar
  46. J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure methods (Gauusian, Inc, Pittsburg, US, 1996) Google Scholar
  47. C. Desfrançois, H. Abdoul-Carime, J.P. Schermann, Int. J. Mod. Phys. 10, 1339 (1996) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • M. Seydou
    • 1
    • 2
  • A. Modelli
    • 3
  • B. Lucas
    • 1
  • K. Konate
    • 2
  • C. Desfrançois
    • 1
  • J. P. Schermann
    • 1
    Email author
  1. 1.Laboratoire de Physique des Lasers, UMR7538, Institut Galilée, Université Paris 13VilletaneuseFrance
  2. 2.DER de Physique, Faculte des Sciences et techniquesBamakoMali
  3. 3.Dipartimento di Chimica, “G. Ciamician”Universita di BolognaBolognaItaly

Personalised recommendations