Advertisement

Measurements of thermal electron attachment rate coefficients to molecules using an electron swarm technique

  • C. A. MayhewEmail author
  • A. D.J. Critchley
  • D. C. Howse
  • V. Mikhailov
  • M. A. Parkes
Plasmas and High Pressure Measurements

Abstract.

An existing electron swarm apparatus has been redesigned and upgraded. In particular, the new design incorporates a novel planar radioactive foil to form an integral part of the drift tube, allowing us to overcome inherent problems present in our earlier system which used a cylindrical radioactive source. In addition to this, substantial upgrades have been made to improve the gating and amplification electronics and the data acquisition system. This has resulted in a much greater signal to noise ratio and improved accuracy. This paper describes the upgraded apparatus and its use in obtaining thermal (300 K) attachment rate coefficients to a number of molecules. The quality of the measurements and data are illustrated through the measurement of the thermal attachment rate coefficient for SF6 (kth(SF6) = (2.38 ±0.15 ) ×10 -7 cm3 s-1). Thermal electron attachment rate coefficients for four other molecules are presented, namely for two derivatives of SF6, SF5CF3 and SF5Cl, and two perfluorocarbons, c-C4F8 and 2-C4F8.

Keywords

Neural Network Data Acquisition Complex System Nonlinear Dynamics Acquisition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Database Needs for Modelling and Simulation of Plasma Processing (National Research Council, National Academy Press, Washington DC, 1996) Google Scholar
  2. Electron-Driven Processes: Scientific Challenges and Technological Opportunities (National Research Council, National Academy Press, Washington DC, 2000) Google Scholar
  3. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) CrossRefPubMedGoogle Scholar
  4. M.A. Huels, L. Sanche, I. Hahndorf, E. Illenberger, J. Chem. Phys. 108, 1309 (1998) CrossRefGoogle Scholar
  5. H. Abdoul-Carime, M.A. Huels, L. Sanche, F. Brüning, E. Illenberger, J. Chem. Phys. 113, 2517 (2000) CrossRefGoogle Scholar
  6. H. Abdoul-Carime, M.A. Huels, L. Sanche, E. Illenberger, J. Am. Chem. Soc. 123, 5354 (2001) CrossRefPubMedGoogle Scholar
  7. G. Hanel, B. Gstir, S. Denifl, P. Scheier, M. Probst, B. Farizon, E. Illenberger, T.D. Märk, Phys. Rev. Lett. 90, 188104-1 (2003) CrossRefPubMedGoogle Scholar
  8. H. Hotop, M.W. Ruf, M. Allan, I.I. Fabrikant, Adv. At. Mol. Opt. Phys. 49, 85 (2003) Google Scholar
  9. D. Smith, P. Ŝpanel, Adv. At. Mol. Opt. Phys. 32, 307 (1994) Google Scholar
  10. W. Barszczewska, J. Kopyra, J. Wnorowska, I. Szamrej, J. Phys. Chem. 107, 11427 (2003) CrossRefGoogle Scholar
  11. W. Barszczewska, J. Kopyra, J. Wnorowska, I. Szamrej, Int. J. Mass Spectrom. Ion Proc. 233, 199 (2003) Google Scholar
  12. M. Fenzlaff, R. Gerhard, E. Illenberger, J. Chem. Phys. 88, 149 (1988) CrossRefGoogle Scholar
  13. L.E. Kline, D.K. Davies, C.L. Chen, P.J. Chantry, J. Appl. Phys. 50, 6789 (1979) CrossRefGoogle Scholar
  14. L.G. Christophorou, E.L. Chaney, A.A. Christodoulides, Chem. Phys. Lett. 3, 363 (1969) CrossRefGoogle Scholar
  15. L.G. Christophorou, D.L. McCorkle, A.A. Christodoulides, Electron-Molecule Interactions and Their Applications (Academic Press, New York, 1984) Google Scholar
  16. S.R. Hunter, J.G. Carter, L.G. Christophorou, J. Chem. Phys. 90, 4879 (1989) CrossRefGoogle Scholar
  17. P. Cicman, M. Francis, J.D. Skalny, T.D. Märk, Int. J. Mass Spectrom. 223/224, 271 (2003) Google Scholar
  18. G.K. Jarvis, R.A. Kennedy, C.A. Mayhew, Int. J. Mass Spectrom. Ion Proc. 205, 253 (2001) Google Scholar
  19. D.H. Williamson, C.A Mayhew, W.B Knighton, E.P. Grimsrud, J. Chem. Phys. 113, 11036 (2000) CrossRefGoogle Scholar
  20. W.B. Knighton, T.M. Miller, E.P. Grimsrud, A.A. Viggiano, J. Chem. Phys. 120, 211 (2004) CrossRefPubMedGoogle Scholar
  21. L.G. Huxley, R.W. Crompton, The Diffusion and Drift of Electrons in Gases, Wiley Series in Plasma Physics (Wiley-Interscience, New York, 1974), Chap. 10, pp. 297-370 Google Scholar
  22. O.W. Dmitriev, W. Tchórzewska, I. Szamrej, M. Foryś, Radiat. Phys. Chem. 40, 547 (1992) Google Scholar
  23. E.B. Wagner, F.J. Davis, G.S. Hurst, J. Chem. Phys. 47, 3138 (1967) CrossRefGoogle Scholar
  24. L.G. Christophorou, J.K. Olthoff, Fundamental Electron Interactions with Plasma Processing Gases (Kluwer Academic/Plenum Publishers, New York, 2004) Google Scholar
  25. I. Szamrej, M. Forys, Radiat. Phys. Chem. 33, 393 (1989) Google Scholar
  26. T.M. Miller, S.T. Arnold, A.A. Viggiano, W.B. Knighton, J. Chem. Phys. 116, 6021 (2002) CrossRefGoogle Scholar
  27. S. Hamada, T. Takuma, O. Yamamoto, in Gaseous Dielectrics IX, edited by L.G. Christophorou, J.K. Olthoff (Kluwer Academic/Plenum Press, New York, 2001), pp. 301-306 Google Scholar
  28. R.A. Morris, T.M. Miller, A.A. Viggiano, J.F. Paulson, S. Solomon, G. Reid, J. Geophys. Res. 100, 1287 (1995) CrossRefGoogle Scholar
  29. R.L. Woodin, M.S. Foster, J.L. Beauchamp, J. Chem. Phys. 72, 4423 (1980) CrossRefGoogle Scholar
  30. L.G. Christophorou, D.L. McCorkle, D. Pittman, J. Chem. Phys. 60, 1182 (1974) CrossRefGoogle Scholar
  31. A.A. Christodoulides, L.G. Christophorou, D.L. McCorkle, Chem. Phys. Lett. 139, 350 (1987) CrossRefGoogle Scholar
  32. I. Sauers, L.G. Christophorou, J.G. Carter, J. Chem. Phys. 71, 3016 (1979) CrossRefGoogle Scholar
  33. R.A. Kennedy, C.A. Mayhew, Int. J. Mass Spectrom. Ion Processes 206, vii (2001) Google Scholar
  34. C.A. Mayhew, G.K. Jarvis, A. Critchley, Int. J. Mass Spectrom. 233, 259 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • C. A. Mayhew
    • 1
    Email author
  • A. D.J. Critchley
    • 1
  • D. C. Howse
    • 2
  • V. Mikhailov
    • 1
  • M. A. Parkes
    • 1
  1. 1.School of Physics and Astronomy, University of BirminghamEdgbastonUK
  2. 2.Walsall College of Arts and Technology, St. Pauls StreetWalsallUK

Personalised recommendations