Advertisement

Coherence length of an elongated condensate

A study by matter-wave interferometry
  • M. HugbartEmail author
  • J. A. Retter
  • F. Gerbier
  • A. F. Varón
  • S. Richard
  • J. H. Thywissen
  • D. Clément
  • P. Bouyer
  • A. Aspect
Atom Chips and Fundamental Physics

Abstract.

We measure the spatial correlation function of Bose-Einstein condensates in the cross-over region between phase-coherent and strongly phase-fluctuating condensates. We observe the continuous path from a Gaussian-like shape to an exponential-like shape characteristic of one-dimensional phase-fluctuations. The width of the spatial correlation function as a function of the temperature shows that the condensate coherence length undergoes no sharp transition between these two regimes.  

Keywords

Spectroscopy Neural Network State Physics Coherence Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Anderson et al., Science 269, 198 (1995); K.B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995); C.A. Sackett, R.G. Hulet, Phys. Rev. Lett. 78, 985 (1997); C.C. Bradley et al., Phys. Rev. Lett. 75, 1687 (1995) Google Scholar
  2. J. Reichel, W. Hänsel, T.W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999) CrossRefGoogle Scholar
  3. D. Müller, D.Z. Anderson, R.J. Grow, P.D.D. Schwindt, E.A. Cornell, Phys. Rev. Lett. 83, 5194 (1999) CrossRefGoogle Scholar
  4. N.H. Dekker et al., Phys. Rev. Lett. 84, 1124 (2000) CrossRefPubMedGoogle Scholar
  5. A. Haase, D. Cassettari, B. Hessmo, J. Schmiedmayer, Phys. Rev. A 64, 043405 (2001) CrossRefGoogle Scholar
  6. J. Fortágh, H. Ott, G. Schlotterbeck, C. Zimmermann, Appl. Phys. Lett. 81, 1146 (2002) CrossRefGoogle Scholar
  7. M.P.A. Jones, C.J. Vale, D. Sahagun, B.V. Hall, E.A. Hinds, Phys. Rev. Lett. 91, 080401 (2003) CrossRefPubMedGoogle Scholar
  8. W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Nature 413, 498 (2001) CrossRefPubMedGoogle Scholar
  9. H. Ott, J. Fortágh, G. Schlotterbeck, A. Grossmann, C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001) CrossRefPubMedGoogle Scholar
  10. T.L. Gustavson et al., Phys. Rev. Lett. 88, 020401 (2002) CrossRefPubMedGoogle Scholar
  11. S. Schneider et al., Phys. Rev. A 67, 023612 (2003) CrossRefGoogle Scholar
  12. Y. Lin, I. Teper, C. Chin, V. Vuletić, Phys. Rev. Lett. 92, 050404 (2004) CrossRefPubMedGoogle Scholar
  13. J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C.I. Westbrook, A. Aspect, Phys. Rev. A 70, 043629 (2004) CrossRefGoogle Scholar
  14. C. Vale, B. Upcroft, M.J. Davis, N.R. Heckenberg, H. Rubinsztein-Dunlop, J. Phys. B 37, 2959 (2004) Google Scholar
  15. E.A. Hinds, C.J. Vale, M.G. Boshier, Phys. Rev. Lett. 86, 1462 (2001) CrossRefPubMedGoogle Scholar
  16. W. Hänsel, J. Reichel, P. Hommelhoff, T.W. Hänsch, Phys. Rev. A 64, 063607 (2001) CrossRefGoogle Scholar
  17. E. Andersson, T. Calarco, R. Folman, M. Andersson, B. Hessmo, J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002) CrossRefPubMedGoogle Scholar
  18. Y.-J. Wang et al., e-print arXiv:cond-mat/0407689 Google Scholar
  19. S. Dettmer et al., Phys. Rev. Lett. 87, 160406 (2001) CrossRefGoogle Scholar
  20. I. Shvarchuck, Ch. Buggle, D.S. Petrov, K. Dieckmann, M. Zielonkowski, M. Kemmann, T.G. Tiecke, W. von Klitzing, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 89, 270404 (2002) CrossRefPubMedGoogle Scholar
  21. S. Richard, F. Gerbier, J.H. Thywissen, M. Hugbart, P. Bouyer, A. Aspect, Phys. Rev. Lett. 91, 010405 (2003) CrossRefPubMedGoogle Scholar
  22. E.W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y.B. Band, M. Edwards, M. Doery, P.S. Julienne, K. Helmerson, S.L. Rolston, W.D. Phillips, Phys. Rev. Lett. 83, 3112 (1999) CrossRefGoogle Scholar
  23. J. Stenger et al., Phys. Rev. Lett. 82, 4569 (1999) CrossRefGoogle Scholar
  24. I. Bloch, T.W. Hänsch, T. Esslinger, Nature 403, 166 (2000) CrossRefPubMedGoogle Scholar
  25. D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 85, 3745 (2000) CrossRefPubMedGoogle Scholar
  26. Y. Castin, R. Dum, E. Mandonnet, A. Minguzzi, I. Carusotto, J. Mod. Opt. 47, 2671 (2000) CrossRefGoogle Scholar
  27. D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 87, 050404 (2001) CrossRefPubMedGoogle Scholar
  28. D. Hellweg, L. Cacciapuoti, M. Kottke, T. Shulte, K. Sengstock, W. Ertmer, J.J. Arlt, Phys. Rev. Lett. 91, 010406 (2003) CrossRefPubMedGoogle Scholar
  29. J.E. Simsarian, J. Denschlag, M. Edwards, C.W. Clark, L. Deng, E.W. Hagley, K. Helmerson, S.L. Rolston, W.D. Phillips, Phys. Rev. Lett. 85, 2040 (2000) CrossRefPubMedGoogle Scholar
  30. D.E. Miller, J.R. Anglin, J.R. Abo-Shaeer, K. Xu, J.K. Chin, W. Ketterle, e-print arXiv:cond-mat/0412672 Google Scholar
  31. Y. Castin, R. Dum, Phys. Rev. Lett. 77, 5315 (1996) CrossRefPubMedGoogle Scholar
  32. F. Zambelli, L. Pitaevskii, D.M. Stamper-Kurn, S. Stringari, Phys. Rev. A 61, 063608 (2000) CrossRefGoogle Scholar
  33. F. Gerbier, J.H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, A. Aspect, Phys. Rev. A 67, 051602 (2003) CrossRefGoogle Scholar
  34. A.A. Michelson, Astroph. J. 51, 257 (1920) CrossRefGoogle Scholar
  35. A. Labeyrie, in Progress in Optics XIV, edited by E. Wolf (North-Holland, 1976) pp. 47-87 Google Scholar
  36. Note that the Bragg momentum spectroscopy method does not suffer from this problem Google Scholar
  37. R. Hanbury Brown, R.Q. Twiss, Nature 177, 27 (1956); Nature 178, 1046 (1956) Google Scholar
  38. B. Desruelle et al., Phys. Rev. A 60, R1759 (1999) Google Scholar
  39. P. Bouyer, A. Aspect, M. Lécrivain, B. Desruelle, V. Boyer, patent 00 02704 (2000) Google Scholar
  40. S. Stringari, Phys. Rev. A 58, 2385 (1998) CrossRefGoogle Scholar
  41. P. Bouyer, J.H. Thywissen, F. Gerbier, M. Hugbart, S. Richard, J. Retter, A. Aspect, J. Phys. IV France 116, 219 (2004) Google Scholar
  42. S. Richard, Ph.D. thesis, University of Paris XI, 2003 Google Scholar
  43. F. Gerbier, Ann. Phys. Fr. 29, no. 1 (2004) Google Scholar
  44. F. Gerbier et al., Phys. Rev. Lett. 92, 030405 (2004) CrossRefPubMedGoogle Scholar
  45. F. Gerbier, J.H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, A. Aspect, Phys. Rev. A 70, 013607 (2004) CrossRefGoogle Scholar
  46. Our cell allows maximum 25 ms free-fall. We increase the time-of-flight by applying, after the Bragg pulses, a magnetic field gradient opposed to the gravity field Google Scholar
  47. In [27], Tφ is defined relative to a phase coherence length Lφ, such that Lφ/L= Tφ/T. Here, Lφ is the characteristic separation over which the phase fluctuates by 1 radian at the trap centre Google Scholar
  48. This would be equivalent to averaging the original images: the fringe contrast would be averaged out to the non-interfering density profile Google Scholar
  49. Note that this definition of LC gives a value which is always smaller than L, even at T=0, in contrast to the definition of Lφ which goes to infinity [47]. The 1/e values of both Ceff(s) and C(1)(s) reflect the effects of both the phase fluctuations (characterised by Lφ) and the condensate density envelope n(r). For T/Tφ> 8, the phase fluctuations dominate and it was shown in [21], [42], [43] that the 1/e width of C(1)(s) is equivalent to αLφ where the factor α=0.64 accounts for the fact that we integrate over the entire condensate, whereas Lφ is valid only at trap centre Google Scholar
  50. J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, 1996) Google Scholar
  51. This has been confirmed by MTF measurements of the Pixelfly HiRes camera alone, provided by PCO (www.pco.de) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • M. Hugbart
    • 1
    Email author
  • J. A. Retter
    • 1
  • F. Gerbier
    • 2
  • A. F. Varón
    • 1
  • S. Richard
    • 3
  • J. H. Thywissen
    • 4
  • D. Clément
    • 1
  • P. Bouyer
    • 1
  • A. Aspect
    • 1
  1. 1.Laboratoire Charles Fabry de l’Institut d’OptiqueOrsay CedexFrance
  2. 2.Institut für Physik, Johannes Gutenberg UniversitätMainzGermany
  3. 3.THALES Research & TechnologyOrsay CedexFrance
  4. 4.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations