Advertisement

Process reconstruction from incomplete and/or inconsistent data

  • M. Ziman
  • M. Plesch
  • V. BužekEmail author
Novel Schemes for Quantum Information Processing

Abstract.

We analyze how an action of a qubit channel (map) can be estimated from the measured data that are incomplete or even inconsistent. That is, we consider situations when measurement statistics is insufficient to determine consistent probability distributions. As a consequence either the estimation (reconstruction) of the channel completely fails or it results in an unphysical channel (i.e., the corresponding map is not completely positive). We present a regularization procedure that allows us to derive physically reasonable estimates (approximations) of quantum channels. We illustrate our procedure on specific examples and we show that the procedure can be also used for a derivation of optimal approximations of operations that are forbidden by the laws of quantum mechanics (e.g., the universal NOT gate).

Keywords

Spectroscopy Neural Network State Physics Probability Distribution Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.M. D’Ariano, P. Lo Presti, Phys. Rev. Lett. 86, 4195 (2001)Google Scholar
  2. G.M. D’Ariano, P. Lo Presti, “Characterization of quantum devices” in Quantum Estimations: Theory and Experiment, Springer Series on Lecture Notes in Physics, Band 649, edited by G.M. Paris, J. Řeháček (Springer-Verlag, Berlin, 2004), p. 299 Google Scholar
  3. M. Ježek, J. Fiurášek, Z. Hradil, Phys. Rev. A 68, 012305 (2003)CrossRefGoogle Scholar
  4. Z. Hradil, J. Řeháček, J. Fiurášek, M. Ježek, Maximum-Likelihood Methods in Quantum Mechanics in Quantum State Estimation, Springer Series on Lecture Notes in Physics, Band 649, edited by M.G.A. Paris, J. Řeháček (Springer-Verlag, Berlin, 2004), p. 63 Google Scholar
  5. J.F. Poyatos, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 78, 390 (1997)Google Scholar
  6. I.L. Chuang, M.A. Nielsen, J. Mod. Opt. 44, 2455 (1997)CrossRefGoogle Scholar
  7. V. Bužek, Phys. Rev. A 58, 1753 (1998)Google Scholar
  8. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (University Press, Cambridge, 2000) Google Scholar
  9. M. Ziman, M. Plesch, V. Bužek, Found. Phys. (to appear) arXiv:quant-ph/0406088 Google Scholar
  10. M. Ziman, T. Hannemann, M. Plesch, V. Bužek, Ch. Wunderlich, in preparation Google Scholar
  11. M. Ziman, M. Plesch, V. Bužek, P. Stelmachovic, Phys. Rev. Lett. (submitted) arXiv:quant-ph/0501102 Google Scholar
  12. M.B. Ruskai, S. Szarek, E. Werner, Lin. Alg. Appl. 347, 159 (2002)Google Scholar
  13. V. Bužek, M. Hillery, R.F. Werner, Phys. Rev. A 60, R2626 (1999)Google Scholar
  14. A. Carlini, M. Sasaki, Phys. Rev. A 68, 042327 (2003)Google Scholar
  15. V. Bužek, R. Derka, Quantum Observations, in Coherence and Statistics of Photons and Atoms, edited by J. Peřina (John Wiley & Sons, New York, 2001), p. 198 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Research Center for Quantum Information, Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Faculty of Informatics, Masaryk UniversityBrnoCzech Republic

Personalised recommendations