Vacuum-field atom trapping in a wide aperture spherical resonator

  • J.-M. Daul
  • P. GrangierEmail author
Cavity QED and Trapped Neutral Atoms


We consider the situation where a two-level atom is placed in the vicinity of the center of a spherical cavity with a large numerical aperture. The vacuum field at the center of the cavity is actually equivalent to the one obtained in a microcavity, and both the dissipative and the reactive parts of the atom’s spontaneous emission are significantly modified. Using an explicit calculation of the spatial dependence of the radiative relaxation rate and of the associated level shift, we show that for a weakly excitating light field, the atom can be attracted to the center of the cavity by vacuum-induced light shifts.


Neural Network Relaxation Rate Quantum Computing Spatial Dependence Spontaneous Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bibliographic note: this paper was written in 1995, and it is presented here in its original form with minor editing. The results were initially presented by Jean-Marc Daul at the conference Quantum Optics in Wavelength Scale Structures, Cargèse, Corsica, August 26-September 2, 1995. The same results were also presented by Philippe Grangier at the Annual Meeting of the TMR Network Microlasers and Cavity QED, Les Houches, France, April 21-25, 1997 Google Scholar
  2. K.H. Drexhage, in Progress in Optics XII, edited by E. Wolf (North-Holland, Amsterdam, 1974) Google Scholar
  3. D. Kleppner, Phys. Rev. Lett. 47, 233 (1981)ADSGoogle Scholar
  4. P. Goy, J.M. Raymond, M. Gross, S. Haroche, Phys. Rev. Lett. 50, 1903 (1983)ADSGoogle Scholar
  5. G. Gabrielse, H. Dehmelt, Phys. Rev. Lett. 55, 67 (1985)ADSGoogle Scholar
  6. R.G. Hulet, E.S. Hilfer, D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985)ADSGoogle Scholar
  7. D.J. Heinzen, J.J. Childs, J.E. Thomas, M.S. Feld, Phys. Rev. Lett. 58, 1320 (1987)ADSGoogle Scholar
  8. W. Jhe, A. Anderson, E.A. Hinds, D. Meschede, L. Moi, S. Haroche, Phys. Rev. Lett. 58, 666 (1987)CrossRefADSGoogle Scholar
  9. F. De Martini, G. Innocenti, G.R. Jacobovitz, P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987) ADSGoogle Scholar
  10. Y. Zhu, A. Lezama, T.W. Mossberg, M. Lewenstein, Phys. Rev. Lett. 61, 1946 (1988)ADSGoogle Scholar
  11. D.J. Heinzen, M.S. Feld, Phys. Rev. Lett. 59, 2623 (1987)ADSGoogle Scholar
  12. S.E. Morin, C.C. Yu, T.W. Mossberg, Phys. Rev. Lett. 73, 1489 (1994)ADSGoogle Scholar
  13. J.-M. Daul, P. Grangier, Eur. Phys. J. D 32, 181 (2005)ADSGoogle Scholar
  14. T.W. Mossberg, M. Lewenstein, D.J. Gauthier, Phys. Rev. Lett. 67, 1723 (1991)ADSGoogle Scholar
  15. S. Haroche, M. Brune, J.M. Raimond, Europhys. Lett. 14, 19 (1991)ADSGoogle Scholar
  16. B.-G. Englert, J. Schwinger, A.O. Barut, M.O. Scully, Europhys. Lett. 14, 25 (1991)ADSGoogle Scholar
  17. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions. Basic Processes and Applications (Wiley, New York, 1992), complement A.V Google Scholar
  18. J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji, J. Phys. France 43, 1617 (1982); 45, 637 (1984)Google Scholar
  19. J.P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980)ADSGoogle Scholar
  20. J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985)CrossRefADSGoogle Scholar
  21. C. Schön, J.I. Cirac, Phys. Rev. A 67, 043813 (2003) ADSGoogle Scholar
  22. J. Eschner, Ch. Raab, F. Schmidt-Kaler, R. Blatt, Nature 413, 495 (2001)CrossRefADSGoogle Scholar
  23. M.A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, Phys. Rev. Lett. 91, 213602 (2003) ADSGoogle Scholar
  24. P. Bushev, A. Wilson, J. Eschner, C. Raab, F. Schmidt-Kaler, C. Becher, R. Blatt, Phys. Rev. Lett. 92, 223602 (2004) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire Charles Fabry de l’Institut d’OptiqueOrsay CedexFrance

Personalised recommendations