Advertisement

Insights into positron annihilation lifetime spectroscopy by molecular dynamics simulations

Free-volume calculations for liquid and glassy glycerol
  • D. Račko
  • R. ChelliEmail author
  • G. Cardini
  • J. Bartoš
  • S. Califano
Molecular Physics and Chemical Physics

Abstract.

The relationship between free-volume properties measured from positron annihilation lifetime spectroscopy (PALS) and calculated from molecular dynamics simulations has been investigated for glassy and liquid glycerol in the temperature range 150–400 K. A virtual probing procedure has been developed to retrieve information on the basic free-volume properties of the simulated microstructures, i.e. mean cavity volume and free-volume cavity fractions. Our data leads us to infer on the occurrence of experimentally non-detectable small cavities with mean equivalent radius of 1.8–1.9 Å between 250 and 275 K. The size of these limiting cavities is found to be temperature dependent, being smaller at low temperatures. At high temperatures, above a characteristic PALS temperature Tb2L , the formation of very large cavities is predicted. This finding suggests that, when the dimension of the holes in the system exceeds a given value, the PALS measurements become unable to catch the complete structural information and phenomena of dynamical origin enter into play in the PALS signal decay. The calculated number of cavities is found to be almost independent on the temperature from the glassy up to the liquid phase, thus furnishing a certain support to theoretical models proposed to evaluate the free-volume cavity fractions.

Keywords

Microstructure Neural Network Glycerol Molecular Dynamic Simulation Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Brandt, A. Dupasquier, Positron Solid State Physics (North-Holland, Amsterdam, 1983) Google Scholar
  2. Y.C. Jean, Characterizing Free Volume and Holes in Polymers by Positron Annihilation Spectroscopy, in Positron Spectroscopy of Solids, edited by A. Dupasquier (IOS, Ohmsha, Amsterdam, 1995), pp. 563–580 Google Scholar
  3. J. Bartoš, Positron Annihilation Spectroscopy of Polymers and Rubbers, in Encyclopedia of Analytical Chemistry, edited by R.A. Meyers (Wiley & Sons, Chichester, 2000), pp. 7968–7987 Google Scholar
  4. Y.C. Jean, Microchem. J. 42, 72 (1990) MathSciNetGoogle Scholar
  5. S.J. Tao, J. Chem. Phys. 56, 5499 (1972) ADSGoogle Scholar
  6. M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981) ADSGoogle Scholar
  7. H. Nakanishi, S.J. Wang, Y.C. Jean, in Positron Annihilation Studies of Fluids, edited by S.C. Sharma (World Science, Singapore, 1988) Google Scholar
  8. T. Mukherjee, S.K. Das, B.N. Ganguly, B. Dutta-Roy, Phys. Rev. B 57, 13363 (1998) ADSGoogle Scholar
  9. A.J. Kovacs, Fortschr. Hochpolym.-Forsch. 3, 394 (1964) Google Scholar
  10. Y. Kobayashi, W. Zheng, E.F. Meyer, J.D. McGervey, A.M. Jamieson, R. Simha, Macromolecules 22, 2302 (1989) ADSGoogle Scholar
  11. Y.Y. Wang, H. Nakanishi, Y.C. Jean, T.C. Sandreczki, J. Polym. Sci. B 28, 1431 (1990) Google Scholar
  12. H. Nakanishi, Y.C. Jean, E.G. Smith, T.C. Sandreczki, J. Polym. Sci. B 27, 1419 (1989) Google Scholar
  13. J. Bartoš, J. Krištiak, J. Phys. Chem. B 104, 5666 (2000) Google Scholar
  14. J. Bartoš, O. Šauša, J. Krištiak, Non-linear Dielectric Phenomena in Complex Liquids, ARW NATO Series (Kluwer Acad. Publ., Dordrecht, The Netherlands, 2004), p. 289 Google Scholar
  15. M. Welander, F.H.K. Maurer, Mater. Sci. Forum 105-110, 1811 (1992) Google Scholar
  16. P. Bandžuch, J. Krištiak, O. Šauša, J. Zrubcová, Phys. Rev. B 61, 8784 (2000).ADSGoogle Scholar
  17. G. Consolati, M. Levi, L. Messa, G. Tieghi, Europhys. Lett. 53, 497 (2001) ADSGoogle Scholar
  18. A.J. Batschinski, Z. Phys. Chem. 84, 643 (1913) Google Scholar
  19. T.G. Fox, P.J. Flory, J. Appl. Phys. 21, 581 (1950) ADSGoogle Scholar
  20. A.K. Doolittle, J. Appl. Phys. 22, 1031 (1951) ADSGoogle Scholar
  21. D. Turnbull, M.H. Cohen, J. Chem. Phys. 34, 120 (1961) ADSGoogle Scholar
  22. G.S. Grest, M.H. Cohen, Adv. Chem. Phys. 48, 455 (1981) Google Scholar
  23. E.G. Kim, S. Misra, W.L. Mattice, Macromolecules 26, 3424 (1993) ADSGoogle Scholar
  24. D. Rigby, R.J. Roe, Macromolecules 23, 5312 (1990) ADSGoogle Scholar
  25. S. Lee, W.L. Mattice, Comput. Theor. Polym. S. 9, 57 (1999) Google Scholar
  26. R.M. Dammert, S.L. Maunu, F.H.J. Maurer, I.M. Neelov, S. Niemelä, F. Sundholm, C. Wästlund, Macromolecules 32, 1930 (1999) ADSGoogle Scholar
  27. V.M. Shah, S.A. Stern, P.J. Ludovice, Macromolecules 22, 4660 (1989) ADSGoogle Scholar
  28. M.L. Connolly, J. Appl. Cryst. 16, 548 (1983) Google Scholar
  29. T.J. Richmond, J. Mol. Biol. 178, 63 (1984) Google Scholar
  30. M.L. Connolly, J. Am. Chem. Soc. 107, 1118 (1985) Google Scholar
  31. S. Arizzi, P.H. Mott, U.W. Suter, J. Polym. Sci. B 30, 415 (1992) Google Scholar
  32. J.L. Finney, Proc. R. Soc. London A 319, 479 (1970) CrossRefADSGoogle Scholar
  33. W. Brostow, J.P. Dussault, B.L. Fox, J. Comput. Phys. 29, 81 (1978) zbMATHADSMathSciNetGoogle Scholar
  34. M. Tanemura, T. Ogawa, N. Ogita, J. Comput. Phys. 51, 191 (1983) zbMATHADSMathSciNetGoogle Scholar
  35. N.N. Medvedev, J. Comput. Phys. 67, 223 (1986) zbMATHADSMathSciNetGoogle Scholar
  36. S. Sastry, D.S. Corti, P.G. Debenedetti, F.H. Stillinger, Phys. Rev. E 56, 5524 (1997) ADSMathSciNetGoogle Scholar
  37. J. Bartos, J. Urban, P. Mach, J. Kristiak, Mater. Sci. Forum 363-365, 294 (2001) Google Scholar
  38. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987) Google Scholar
  39. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 1996) Google Scholar
  40. R. Chelli, P. Procacci, G. Cardini, R.G. Della Valle, S. Califano, Phys. Chem. Chem. Phys. 1, 871 (1999) Google Scholar
  41. R. Chelli, P. Procacci, G. Cardini, S. Califano, Phys. Chem. Chem. Phys. 1, 879 (1999) Google Scholar
  42. J. Bartos, O. Sausa, P. Bandzuch, J. Zrubcova, J. Kristiak, J. Non-Cryst. Solids 307, 417 (2002) ADSGoogle Scholar
  43. J. Bartos, O. Sausa, J. Kristiak, T. Blochowicz, E. Rössler, J. Phys.-Cond. Matter 13, 11473 (2001) ADSGoogle Scholar
  44. K.L. Ngai, P. Lunkenheimer, C. Leon, U. Schneider, R. Brand, A. Loidl, J. Chem. Phys. 115, 1405 (2001) ADSGoogle Scholar
  45. J. Wuttke, J. Hernandez, G. Li, G. Coddens, H.Z. Cummins, F. Fujara, W. Petry, H. Sillescu, Phys. Rev. Lett. 72, 3052 (1994) ADSGoogle Scholar
  46. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993) ADSGoogle Scholar
  47. P. Procacci, T.A. Darden, E. Paci, M. Marchi, J. Comput. Chem. 18, 1848 (1997) Google Scholar
  48. P. Procacci, T. Darden, M. Marchi, J. Phys. Chem. 100, 10464 (1996) Google Scholar
  49. S. Sastry, T.M. Truskett, P.G. Debenedetti, S. Torquato, F.H. Stillinger, Mol. Phys. 95, 289 (1998) Google Scholar
  50. A.K. Schultz, Kolloid Z. 138, 75 (1954) Google Scholar
  51. T. Blochowicz, A. Kudlik, S. Benkhof, J. Senker, E. Rössler, G. Hinze, J. Chem. Phys. 110, 12011 (1999)ADSGoogle Scholar
  52. C.M. McCullagh, Z. Yu, A.M. Jamieson, J. Blackwell, J.D. McGervey, Macromolecules 28, 6100 (1995) ADSGoogle Scholar
  53. A. Szymoszek, A. Koll, Chem. Phys. Lett. 373, 591 (2003) ADSGoogle Scholar
  54. Z. Yu, Ph.D. thesis, Case Western Reserve University (1995) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • D. Račko
    • 1
    • 2
  • R. Chelli
    • 3
    • 2
    Email author
  • G. Cardini
    • 3
    • 2
  • J. Bartoš
    • 1
  • S. Califano
    • 3
    • 2
  1. 1.Polymer Institute of SASBratislavaSlovak Republic
  2. 2.European Laboratory for Non-linear Spectroscopy (LENS)Sesto FiorentinoItaly
  3. 3.Dipartimento di ChimicaUniversità di FirenzeSesto FiorentinoItaly

Personalised recommendations