Advertisement

The hidden phase of Fock states; quantum non-local effects

  • F. Laloë
Laser Cooling and Quantum Gas

Abstract.

We revisit the question of how a definite phase between Bose-Einstein condensates can spontaneously appear under the effect of measurements. We first consider a system that is the juxtaposition of two subsystems in Fock states with high populations, and assume that successive individual position measurements are performed. Initially, the relative phase is totally undefined, and no interference effect takes place in the first position measurement. But, while successive measurements are accumulated, the relative phase becomes better and better defined, and a clear interference pattern emerges. It turns out that all observed results can be interpreted in terms of a pre-existing, but totally unknown, relative phase, which remains exactly constant during the experiment. We then generalize the results to more condensates. We also consider other initial quantum states than pure Fock states, and distinguish between intrinsic phase of a quantum state and phase induced by measurements. Finally, we examine the case of multiple condensates of spin states. We discuss a curious quantum effect, where the measurement of the spin angular momentum of a small number of particles can induce a big angular momentum in a much larger assembly of particles, even at an arbitrary distance. This spin observable can be macroscopic, analogous to the pointer of a measurement apparatus, which illustrates the non-locality of standard quantum mechanics with particular clarity. The effect can be described as the teleportation at arbitrary distances of the continuous classical result of a local experiment. The EPR argument, transposed to this case, takes a particularly convincing form since it does not involve incompatible measurements and deals only with macroscopic variables.

Keywords

Angular Momentum Relative Phase Macroscopic Variable Standard Quantum Mechanic Spin Angular Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.S. Davydov, Quantum Mechanics, 2nd edn. (Pergamon press, 1965), p. 130 and following Google Scholar
  2. P. Carruthers, M.M. Nieto, Rev. Mod. Phys. 40, 411 (1968) Google Scholar
  3. A.L. Alimov, E.V. Damaskinskii, Teor. Mat. Fizika 38, 58 (1979)Google Scholar
  4. R.J. Glauber, Phys. Rev. 131, 2766 (1963)Google Scholar
  5. J. Javanainen, Sun Mi Ho, Phys. Rev. Lett. 76, 161 (1996)Google Scholar
  6. T. Wong, M.J. Collett, D.F. Walls, Phys. Rev. A 54, R3718 (1996)Google Scholar
  7. J.I. Cirac, C.W. Gardiner, M. Naraschewski, P. Zoller, Phys. Rev. A 54, R3714 (1996)Google Scholar
  8. Y. Castin, J. Dalibard, Phys. Rev. A 55, 4330 (1997)Google Scholar
  9. K. Mølmer, Phys. Rev. A 55, 3195 (1997)Google Scholar
  10. K. Mølmer, J. Mod. Opt. 44, 1937 (1997)Google Scholar
  11. C. Cohen-Tannoudji, Collège de France 1999-2000 lectures, Chaps. V et VI “Emergence d’une phase relative sous l’effet des processus de détection” http://www.phys.ens.fr/cours/college-de-france/ Google Scholar
  12. Y. Castin, C. Herzog, C.R. Acad. Sci. IV 2, 419 (2001)Google Scholar
  13. C.J. Pethick, H. Smith, Bose-Einstein condensates in dilute gases (Cambridge University Press, 2002), see Chap. 13 Google Scholar
  14. P.W. Anderson, Rev. Mod. Phys. 38, 298 (1966)Google Scholar
  15. A.J. Leggett, F. Sols, Found. Phys. 21, 353 (1991)Google Scholar
  16. A.J. Leggett, “Broken gauge symmetry in a Bose condensate”, in Bose-Einstein condensation, edited by A. Griffin, D.W. Snoke, S. Stringari (Cambridge University Press, 1995); see in particular pp. 458-459 Google Scholar
  17. P.W. Anderson, Basic notions in condensed matter physics (Benjamin-Cummins, 1984) Google Scholar
  18. P.W. Anderson, “Measurement in quantum theory and the problem of complex systems”, inThe Lesson of quantum theory, edited by J. de Boer, E. Dal, O. Ulfbeck (Elsevier, 1986), see Section 3 Google Scholar
  19. K. Mølmer, Phys. Rev. A 65, 021607 (2002) Google Scholar
  20. P. Horak, S.M. Barnett, J. Phys. B 32, 3421 (1999)Google Scholar
  21. J.S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, 1987) Google Scholar
  22. F. Laloë, Am. J. Phys. 69, 655 (2001)Google Scholar
  23. A.J. Leggett, Found. Phys. 25, 113 (1995)Google Scholar
  24. J.A. Dunningham, K. Burnett, Phys. Rev. Lett. 19, 3729 (1999)Google Scholar
  25. I. Zapata, F. Sols, A.J. Leggett, Phys. Rev. A 67, 021603(R) (2003) Google Scholar
  26. S. Kohler, F. Sols, Phys. Rev. A 63, 053605 (2001) Google Scholar
  27. J. Javanainen, J. Phys. B 33, 5493 (2000)Google Scholar
  28. E. Siggia, A. Ruckenstein, Phys. Rev. Lett. 44, 1423 (1980) Google Scholar
  29. J.S. Bell, “Einstein-Podolsky-Rosen experiments”, Proceedings of the Symposium on frontier problems in high energy physics, Pisa (1976), 33-45; see in particular note 24 Google Scholar
  30. J.S. Bell, “Are there quantum jumps?” in Schrödinger, Centenary of a polymath (Cambridge Univ. Press, 1987), see second sentence of the second paragraph Google Scholar
  31. B. d’Espagnat, Phys. Rev. D 11, 1424 (1975), see in particular note 30 Google Scholar
  32. P.H. Eberhard, Nuov. Cim. B 46, 392 (1978)Google Scholar
  33. M. Jammer, The conceptual development of quantum mechanics (Mc. Graw Hill, 1966) Google Scholar
  34. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)CrossRefzbMATHGoogle Scholar
  35. N. Bohr, Phys. Rev. 48, 696 (1935)Google Scholar
  36. F. Laloë, J. Phys. Coll. 1, C2-1 (1981)Google Scholar
  37. H.P. Stapp, Am. J. Phys. 53, 306 (1985); Am. J. Phys. 65, 300 (1997) Google Scholar
  38. D. Mermin, Am. J. Phys. 66, 920 (1998) Google Scholar
  39. B. d’Espagnat, Le réel voilé (Fayard, 1994), § 16-2 Google Scholar
  40. A. Shimony, H. Stein, Am. J. Phys. 69, 848 (2001)Google Scholar
  41. H.P. Stapp, Am. J. Phys. 66, 924 (1998) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire Kasler BrosselParisFrance

Personalised recommendations