Thermal entanglement in two qutrits system

  • G.-F. ZhangEmail author
  • J.-Q. Liang
  • G.-E. Zhang
  • Q.-W. Yan
Quantum Optics and Quantum Information


The thermal entanglement in a two-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called “negativity”. It is found that the thermal entanglement is present and evolvements symmetrically between both ferromagnetic and antiferromagnetic exchange couplings with the temperature. Moreover the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly.


Spectroscopy Magnetic Field Neural Network State Physics Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)CrossRefGoogle Scholar
  2. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University press, Cambridge, 2000) Google Scholar
  3. M.B. Plenio, V. Vedral, Contemp. Phys. 39, 431 (1998)Google Scholar
  4. See, for example, J.M. Raimond et al., Rev. Mod. Phys. 73, 565 (2001); Vedral, Rev. Mod. Phys. 74, 197 (2002)CrossRefMathSciNetGoogle Scholar
  5. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001)Google Scholar
  6. K.M. OConnor, W.K. Wootters, Phys. Rev. A 63, 052302 (2001)Google Scholar
  7. X. Wang, Phys. Rev. A 66, 044305 (2002); X. Wang, Phys. Rev. A 66, 034302 (2002)Google Scholar
  8. G.F. Zhang, J.Q. Liang, Q.W. Yan, Chin. Phys. Lett. 20, 452 (2003)Google Scholar
  9. X. Wang, Phys. Rev. A 64, 012313 (2001); G.L. Kamtaand, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)Google Scholar
  10. D. Gunlycke et al., Phys. Rev. A 64, 042302 (2001)Google Scholar
  11. S. Mancini, S. Bose, Phys. Rev. A 70, 022307 (2004)Google Scholar
  12. M.A. Nielsen, e-print arXiv:quant-ph/0011036 Google Scholar
  13. V. Scarani et al., Phys. Rev. Lett. 88, 097905 (2002)Google Scholar
  14. A. Celia, M.C. Souza Andre, J. Opt. B 5, 73 (2003)Google Scholar
  15. G. Rigolin, Int. J. Quant. Inf. 2, 393 (2004)Google Scholar
  16. L. Zhou, H.S. Song, Y.Q. Guo, Phys. Rev. A 68, 024301 (2003)Google Scholar
  17. M. Lucamarini, S. Paganelli, S. Mancini, Phys. Rev. A 69, 062308 (2004)Google Scholar
  18. S.K. Yip, Phys. Rev. Lett. 90, 250402 (2003)Google Scholar
  19. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  20. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)Google Scholar
  21. K. Zyczkowski et al., Phys. Rev. A 58, 883 (1998)Google Scholar
  22. C. Anteneodo1, A.M.C. Souza, J. Opt. B 5, 73 (2003)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • G.-F. Zhang
    • 1
    Email author
  • J.-Q. Liang
    • 2
  • G.-E. Zhang
    • 3
  • Q.-W. Yan
    • 4
  1. 1.State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of SciencesBeijingP.R. China
  2. 2.Institute of Theoretical Physics, Shanxi UniversityTaiyuanP.R. China
  3. 3.Shenfu Dongsheng Coal Limited Company Shenhua Group, Halagou Coal Mine Daliuta ShenmuShanxiP.R. China
  4. 4.State Key Laboratory of Magnetism, Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations